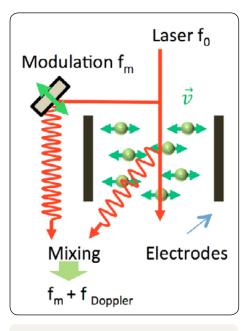


High resolution Zeta Potential Analyzer

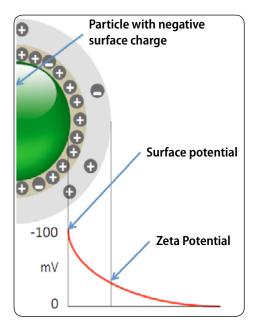
When knowing particle charge counts !

Liposomes and bio-colloids Nanoparticle aggregation Emulsions dispersion Formulation stability Pigments and inks Pharmaceuticals Petrochemicals Polymers ... and more

The WALLIS^ζ



- Zeta potential : +/-200mV
- Particle size : 1nm 100µm Resolution : 0,1mV (in water)


Wallis an instrument dedicated to Zeta potential

WALLIS^{ζ} is an innovative **zeta potential analyzer** dedicated to the characterization of **nanoparticle suspensions**. It is based on a revisited and modern version of the **Laser Doppler Electrophoresis (LDE) technique** offering a unique and unequaled measurement resolution. It is complementary to the Cordouan's **VASCO** particle size analyzer to study colloidal solution stability and properties.

Zeta potential (ζ **)** is a fundamental properties of colloidal suspensions. Basically ζ is intimately related to the **number of electrical charges** attached to the surface of the particles when immersed in a solvent. It is thus **linked to particle-particle interaction and formulation stability** in a very complex way described by physical models like the Electrical Double Layer (EDL).

 $\mu_{e} = C^{st} \text{ (Scat) x } f_{Doppler}$ $\zeta = C^{st} \text{ (Solvent) x } \mu_{e}$ Download technical notes www.cordouan-tech.com

Measurement principle

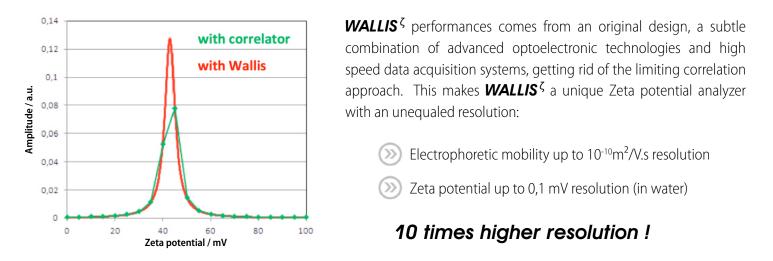
WALLIS^{ζ} works on a modern and innovative evolution of the well known and robust technique called **Laser Doppler Electrophoresis (LDE)**.

Basically, an alternative electrical field/voltage is applied between two electrodes immersed deeply in the colloidal suspension; Because of the electrostatic force, the charged particles located in between the electrodes undergo a translation motion (**electrophoresis**) which speed (v) is directly proportional to the applied electrical field by a factor μ_{a} called the **electrophoretic mobility**.

This parameter μ_{e} is determined in a very accurate manner by measuring the corresponding Doppler frequency shift f_{Doppler} using a high sensitivity optical heterodyne interferometer scheme.

Measurement Cell design : simple, robust, artifact free

Simple : The dip cell design allows simple and easy **sample preparation** and prevents bubble formation. It is compliant with standard cuvette and available in different materials: polystyrene, glass or quartz fully **compatible with organic solvent**.


Robust: The **innovative vitreous carbon electrode** provides **long life, oxidation free** electrodes that can be easily cleaned by standard process like ultrasonic bath or acid-base washing.

Artifact free : WALLIS^ζ optimized dip cell electrodes design prevents from artifact like electroosmosis effects by suppressing solvent induced displacement along the wall of the cuvette; No software correction is needed to the measured signal

WALLIS^⁷ technology led to its best

Think « out of the box » for high resolution measurement

Key benefits

- ✓ No electro-osmosis \rightarrow Artifact free measurements
- ✓ Improved LDE technology (LDE) \rightarrow Efficient, reliable and simple
- Enhanced resolution \rightarrow 10 times better than usual correlation technology
- \checkmark High-resolution measurement \rightarrow Accurate and repeatable zeta potential analysis
- \checkmark Easy to use and intuitive graphical user interface (GUI) software \rightarrow Turn key operation
- ✓ New material for long life electrodes → Reduced maintenance and consumable; cost effective
- ✓ Designed for standard disposable and quartz cuvette → Easy to fill; compatible with organic solvents and highpH suspensions

High performances for advanced applications

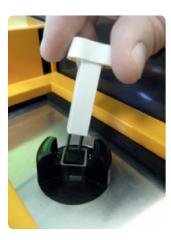
Pharmaceutical

Cosmetics

Chemistry

Advanced colloid

Polymer


Zeta potential [mV]	Stability behavior of the colloid
from 0 to ±5	Rapid coagulation or flocculation
from ±10 to ±30	Incipient instability
from ±30 to ±40	Moderate stability
from ± 40 to ± 60	Good stability
more than ±61	Excellent stability

- For attack limit on a
- Functionalization study
- Drug delivery optimization
- Quality control in manufacturing process
- Fundamental study of electrophoretic physics
- Cosmetic and industrial emulsion stability study
- Nanoparticle formulation and synthesis optimization
- Advanced colloidal stability analysis and optimization
- Ink pigment dispersion and aggregation characterization

And more...

WALLIS

Specifications	
Zeta potential range	-500 mV to 500 mV
Mobility range	10 ⁻¹⁰ to 10 ⁻⁷ m ² /V.s
Particle size (For zeta measurement)	1 nm up to 100 μm
Sample concentration	0.0001% to 10% w/% (solvent dependent)
Temperature control range inside the cell	10°C to 70°C +/-0,1°C (depending on cuvette cell material)
Cell options	Cuvette cell with optical quality windows compatible with organic solvents
Sample volume	Typically 750 μ L (Hellma cell – 10 mm light path)
Maximum sample conductivity	300 mS/cm
Sample Type	Aqueous & organic solvents – pH: 1-14 (depending on cuvette cell material)
Signal processing	
Measurement technology	Laser Doppler Electrophoresis (LDE)
Laser source	Highly reliable 20 mW diode @635 nm coupled to automated optical attenuation system. Other wavelengths available upon request
Measurement angle	Single angle for zeta potential at 17°
Data processing algorithm	Fast Fourier Transform
Resolution	Mobility = 10^{-10} m ² /V.s or Zeta = 0,1 mV (in water)
Detector	Avalanche Photodiode – APD
General	
Computer interface	USB 2.0 – Windows XP, Seven
Dimensions	33 cm x 33 cm x 38 cm (HWD)
Weight	16 kg
Power	100-115/220-240 VAC, 50/60 Hz, 100 W max
System Compliance	
CE certification	CE marked product - Class I laser product, EN 60825-1:2001, CDRH
ISO norm	ISO 13099-2 : 2012 – Colloidal system – methods for zeta-potential determination Part 2 : Optical methods

Simple, easy and high-resolution zeta potential analyzer

Siège principale: Avenue des Baumettes 17 Büro Zürich: Dübendorfstrasse 11a

www.gmp.ch CH-1020 Renens

+41 21 633 21 21 CH-8117 Fällanden +41 44 825 34 00

Fax. +41 21 633 21 29 info@gmp.ch Fax. +41 44 825 34 01 so@gmp.ch

