GALIL

WE MOVE THE WORLD
Galil provides a full line of controllers. Shown from top: DMC-40x0 Accelera Ethernet controller, DMC-21x3 Econo Ethernet controller, DMC-18x6 Accelera PCI controller and RIO Pocket PLC.
Innovator and Leader
With over 500,000 controllers sold, Galil is the leading manufacturer of motion controllers. Since our introduction of the first microprocessor-based motor controller in 1983, Galil has remained the industry’s leading innovator. By offering our customers the most powerful, cost-effective and easy-to-use motion controllers available today, our commitment is to be your primary source for any motor control application. Galil’s unparalleled array of motion controllers is backed by superior technical support and can accommodate the most demanding automation applications—with absolute precision.

Powerful Controllers to Solve Demanding Applications
Galil’s motion controllers use a 32-bit microcomputer and are packed with intelligence and speed for handling any application no matter how simple or complex. Modes of motion include point-to-point positioning, linear and circular interpolation, electronic gearing, electronic cam, PVT, position following and much more. Galil’s latest generation controllers, the Accelera series offer ultra-high speed and precision with 40 microsecond command processing, 32 microsecond servo loop updates, and 22 MHz encoder feedback. Features include PID tuning with notch filter, velocity and acceleration feedforward, non-volatile memory for storing programs, variables and arrays, and plenty of I/O for interfacing to external sensors.

Gali’s Accelera motion controllers offer ultra-high performance and speed.

DMC-40x0 Accelera Ethernet/ RS232 controller

DMC-18x6 Accelera PCI controller
Easy-to-Use Controllers Get You to Market Quickly

It has always been a top priority at Galil to design and make controllers that are easy-to-use. That's why Galil controllers use two-letter, intuitive commands to make programming a snap. For example, the command \textit{BG} begins motion; \textit{SP} specifies the speed; and \textit{ST} stops motion. With over 200 commands, you can quickly and easily program a Galil motor controller to handle virtually any application. Additionally, Galil provides software tools that simplify system set-up and tuning. The powerful GalilTools software provides “one-button” PID tuning and a multi-trace storage scope for display of real-time data such as position, speed and torque.

Custom Solutions to Fit Any Application

If you cannot find a controller to meet your requirements, then Galil will design one specifically for you. We are geared to build cost-effective controllers to meet your criteria, whether adding a new command, changing connector style or accommodating a special communication network. With all the inherent costs, time and risks involved, there's no reason why you should design your own controller when you can rely on the expertise, cost-efficiency, and proven reliability of Galil.

Broad Range of Products

Galil's full product offering can accommodate all your motion and I/O needs. You can choose from single and multi-axis controllers, bus-based and stand-alone, and box-level and card-level controllers. The Accelera Series offers the highest speed and performance while the Econo Series is designed for the lowest cost. Both the Accelera and Econo series are available in PCI bus and Ethernet/RS232 formats. Plug-in drives for stepper and servo motors save space, cost and wiring. Galil's RIO Pocket PLC provides a compact and cost-effective solution for intelligently handling both analog and digital I/O.
Cost-Effective Solutions Give You a Competitive Edge

Galil realizes how critical it is for OEMs to keep their equipment costs down, which is why we designed all of our controllers to give you great value. In fact, we guarantee 100% that our pricing for 100 quantity orders is the lowest in the industry. Go ahead and compare our prices versus the competition. For example, our DMC-1842 4-axis PCI bus controller is just $795 in 100 quantities and $395 in 1000 quantities. That’s less than $100 per axis. With prices this low, why bother to make your own controller!

Continuing Education to Grow Your Knowledge

Galil has always made motion control education a priority for our customers. Our content-rich website is filled with information such as white papers, web tutorials, and numerous application examples. Galil also offers its web-based, “Motion Control Made Easy” course at no charge with product purchase. Customers find our 2-day workshop a great way to get a head start on their automation projects. This workshop includes hands-on labs which enable users to practice newly introduced concepts. Users also gain familiarity with tuning and programming motor controllers, and can spend quality one-on-one time with Galil engineers to discuss their individual project.

World-class Support Assures Your Success

Every Galil controller you buy is backed by Galil’s commitment to superior customer support. This includes a fully-trained technical support team with well over 100 years of motor control experience. To further assure your success, Galil works with a worldwide network of factory-trained, independent representatives who fully understand the requirements of your specific application and stand ready to demonstrate Galil products. They also represent manufacturers of motors, encoders, and drives which are compatible with Galil controllers.

Galil’s application engineers provide prompt technical assistance.

The mission of Galil’s experienced Applications Department is to provide prompt and accurate technical assistance to help OEMs successfully deliver their products to market.
Delivering the Best Value — Anywhere

Galil understands your need to work within budgets and keep costs down. That’s why Galil absolutely guarantees that, with a minimum order of 100 high performance controllers within a 12-month period, our price in the U.S. will always be less than that of any other manufacturer. In fact, Galil’s volume prices are typically half that of the competition.

To be assured of this low price, you simply need to:

- Present a competitive price for 100+ controllers from a valid price list published within 90 days from a recognized manufacturer.
- Show that competitive motion controllers are equivalent, i.e. matching bus type, number of axes, I/O options, and quantity ordered.
- Show that competitive motion controllers have the following high performance features: 1) each axis is individually configurable for stepper or servo motors, 2) on-board application program memory is provided with symbolic variables and multi-tasking, and 3) on-board linear and true circular interpolation is provided with unlimited segments and continuous motion.

With this guarantee, you have the word of Galil’s top management that the prices you pay for Galil high performance controllers will be the best you can get — anywhere.

Discover www.galilmc.com

At www.galilmc.com, you will find a treasure-trove of valuable information — much of which is free — to keep you at the forefront of motion control technology. Galil welcomes and encourages you to take advantage of Galil’s in-depth, technical website with detailed information on products and a wide array of application notes, articles, and on-line tutorials.

- **Product Specifications.** View product descriptions, pin-outs, command set and pricing on line.
- **On-line Bulletin Board.** Post a question and have it answered promptly by a Galil applications expert. Or, search the subject index for questions and answers similar to yours.
- **Motion Code™.** Galil’s helpful engineering tool aids in the development of motion applications. Includes step-by-step design and downloadable code for several motion types.

- **Web-based Training on Motion Control.** Galil’s popular “Motion Control Made Easy” class has been converted into a web-based course for your access 24/7. This is available free with your purchase of a Galil controller.
- **On-line Application Notes, Articles and Product Manuals.** Download complete technical information to stay up to date on technology, trends and products.
- **Web-based Tutorials.** Browse a library with over 20 technical tutorials on a variety of subjects such as tuning, programming and motor types.
- **Free Software Downloads.** Download the latest Galil communication drivers for all current versions of Windows and Linux.
- **MotorSizer™.** Easy-to-use tool for quickly sizing stepper or servo systems.
- **Two-minute Videos.** Galil’s latest library of technical videos provides solutions to common motion and I/O problems.

Galil’s price guarantee assures cost-effective solutions for OEMs.
Galil Motion Control is the leading supplier of high-performance, cost-effective and easy-to-use controllers with over 500,000 controllers installed world-wide. Galil’s complete line of motion controllers includes single and multi-axis; bus-based and stand-alone; box-level and card-level controllers. The Accelera Series offers the highest speed and performance while the Econo Series is designed for the lowest cost. Galil’s Single-Axis controller series offers cost-effective, compact solutions for single-axis applications. Each series is available in PCI and Ethernet/RS232 formats. Plug-in drives for steppers and servos provide a complete motion solution that saves cost, space and wiring. Galil’s Pocket PLC series provides an intelligent and cost-effective programmable automation controller solution for handling analog and digital I/O.

Galil also provides software tools for its controllers including GalilTools for easy system set-up, communication and tuning. Other accessories include cables and interconnect boards for convenient prototyping.

Accelera Controllers & Drives
Sizzling Speed. Fully Loaded.
- DMC-40x0 Ethernet/RS232
- DMC-18x6 PCI Bus

Econo Controllers & Drives
For extremely cost-sensitive applications.
- DMC-41x3 Ethernet/RS232/USB
- DMC-21x3 Ethernet/RS232
- DMC-18x2 PCI Bus

Single-Axis Controllers
Cost-effective solutions for single-axis applications.
- DMC-14x5 Ethernet/RS232
- CDS-3310 Ethernet/RS232 with 500W servo drive

Pocket PLC Series
Smart. Compact. Low-Cost. Packed with I/O.
- RIO-47xxx

Galil provides a full line of controllers including Accelera, Econo and the RIO Pocket PLC.
It’s all about Speed!

Galil’s ultra high-speed Accelera Series represents its 5th generation motion controllers. Pumped up with a powerful RISC processor, the Accelera series races along at much higher speeds than prior generation controllers.

- Processes commands in 40 microseconds—10 times faster than prior generations
- Accepts encoder inputs as fast as 22 MHz
- Servo loop updates as high as 32 kHz

All the Bells and Whistles are Standard

- Available in 1- through 8-axis models
- Available with Ethernet or PCI:
 DMC-40x0 Ethernet/RS232
 DMC-18x6 PCI
- Mix-and-Match steppers and servos
- Handles virtually any mode of motion with ease
- 2000 lines x 80 char. program memory; 16000 element arrays; 510 variables
- Multitasking for running up to eight programs simultaneously
- Optically isolated digital inputs and outputs
- 8 uncommitted analog inputs with 12-bit or 16-bit ADC
- Accepts two encoders for every servo axis

DMC-40x0 Integrated Drive Options

<table>
<thead>
<tr>
<th>DRIVE MODEL</th>
<th>MOTOR TYPE</th>
<th># OF AXES</th>
<th>CURRENT</th>
<th>VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMP-43020</td>
<td>Servo</td>
<td>2</td>
<td>7A cont, 10A peak</td>
<td>20–80 VDC</td>
</tr>
<tr>
<td>AMP-43040</td>
<td>Servo</td>
<td>4</td>
<td>7A cont, 10A peak</td>
<td>20–80 VDC</td>
</tr>
<tr>
<td>AMP-43140</td>
<td>Servo</td>
<td>4</td>
<td>1A max</td>
<td>±12–30 VDC</td>
</tr>
<tr>
<td>SDM-44040</td>
<td>Stepper</td>
<td>4</td>
<td>1.4A/phase</td>
<td>12–30 VDC</td>
</tr>
<tr>
<td>SDM-44140</td>
<td>Microstep</td>
<td>4</td>
<td>3A/phase</td>
<td>20–60 VDC</td>
</tr>
</tbody>
</table>
Product Description

The DMC-40x0 is Galil’s highest performance, stand-alone motor controller. It belongs to Galil’s latest generation motion controller family: the Accelera Series, which accepts encoder inputs up to 22 MHz, provides servo update rates as high as 32 kHz, and processes commands in as fast as 40 microseconds — 10 times faster than prior generation controllers.

The DMC-40x0 is a full-featured motion controller packaged with optional multi-axis drives in a compact, metal enclosure. The unit operates stand-alone or interfaces to a PC with Ethernet 10/100Base-T or RS232. The controller includes optically isolated I/O, high-power outputs capable of driving brakes or relays, and analog inputs for interfacing to analog sensors. The DMC-40x0 controller and drive unit accepts power from a single 20–80 VDC source.

The DMC-40x0 is available in one through eight axis formats, and each axis is user-configurable for stepper or servo motor operation. Standard programming features include PID compensation with velocity and acceleration feedforward, multitasking for simultaneously running up to eight programs, and I/O processing for synchronizing motion with external events. Modes of motion include point-to-point positioning, position tracking, jogging, linear and circular interpolation, PVT, contouring, electronic gearing and electronic cam (ECAM). Like all Galil controllers, the DMC-40x0 controllers use Galil’s popular, intuitive command language, making them very easy to program. GalilTools servo design software further simplifies system set-up with “one-button” servo tuning and real-time display of position and velocity information.

Features

- Packaged controller in 1 through 8 axis versions: DMC-40x0 where x=1,2,3,4,5,6,7,8 axes
- (1) 10/100BASE-T Ethernet port with Auto MDIX
 (2) RS232 ports up to 115 kbaud
- User-configurable for stepper or servo motors on any combination of axes. Optional firmware for piezo-ceramic motors. Configurable for sinusoidal commutation
- Accepts up to 22 MHz encoder frequencies for servos. Outputs pulses up to 6 MHz for steppers
- PID compensation with velocity and acceleration feedforward, integration limits, notch filter and low-pass filter
- Modes of motion include jogging, point-to-point positioning, contouring, PVT, linear and circular interpolation, electronic gearing and electronic cam. Features elliptical scaling, slow-down around corners, infinite segment feed and feedrate override
- Over 200 English-like commands including conditional statements and event triggers
- Non-volatile memory for programs, variables and arrays. Multitasking for concurrent execution of up to eight programs
- Optically isolated home input and forward and reverse end-of-travel limits for every axis.
- Uncommitted, isolated inputs and isolated outputs
 1- through 4-axis models: 8 inputs and 8 outputs
 5- through 8-axis models: 16 inputs and 16 outputs
- Isolated, high-power outputs for driving brakes or relays
- High speed position latch for each axis and output compare
- 8 uncommitted analog inputs
- 32 additional 3.3 V I/O (5 V option)
- 2 line x 8 character programmable LCD
- Dual encoder inputs for each servo axis
- Accepts single 20–80 VDC input
- Available with internal stepper and servo drives. Or, connect to external drives of any power range
- Communication drivers for Windows, Mac OSX, and Linux
- Custom hardware and firmware options available
- DMC-40x0 has CE certification. Specify DMC-40x0-ETL for ETL certification
Ethernet/RS232 Accelera Series, 1–8 axes

DMC-40x0 Series

Specifications

System Processor
- RISC-based, clock multiplying processor with DSP functions

Communications Interface
- (1) 10/100BASE-T Ethernet port with Auto MDIX
- (2) RS232 ports up to 115 kbaud

Commands are sent in ASCII. A binary communication mode is also available as a standard feature

Modes of Motion:
- Point-to-point positioning
- Position Tracking
- Jogging
- 2D Linear and Circular Interpolation with feedrate override
- Linear Interpolation for up to 8 axes
- Tangential Following
- Helical
- Electronic Gearing with multiple masters and ramp-to-gearing
- Gantry Mode
- Electronic Cam
- Contouring
- PVT (Position-Velocity-Time)
- Teach and playback

Memory
- Program memory size — 2000 lines × 80 characters
- 510 variables
- 16,000 total array elements in up to 30 arrays

Filter
- PID with velocity and acceleration feedforward
- Notch filter and low-pass filter
- Dual-loop control for backlash compensation
- Velocity smoothing to minimize jerk
- Integration limit
- Torque limit
- Offset adjustment

Kinematic Ranges
- Position: 32 bit (±2.15 billion counts per move; automatic rollover; no limit in jog or vector modes)
- Velocity: Up to 22 million counts/sec for servo motors
- Acceleration: Up to 1 billion counts/sec²

Uncommitted I/O

<table>
<thead>
<tr>
<th></th>
<th>Isolated Inputs</th>
<th>Isolated Outputs</th>
<th>Analog Inputs</th>
<th>3.3 V I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMC-4010 thru - 4040</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>DMC-4050 thru - 4080</td>
<td>16</td>
<td>16</td>
<td>8</td>
<td>32</td>
</tr>
</tbody>
</table>

High Speed Position Latch
- Uncommitted inputs 1-4 latch A,B,C,D and 9-12 latch E, F, G, H axes (latches within 40 microseconds with optoisolation)

Dedicated Inputs (per axis)
- Main encoder inputs — Channel A, A-, B, B-, I, I- (±12 V or TTL)
- Dual encoder (for axes configured as servo) — Channel A, A-, B, B-
- Forward and reverse limit inputs — optoisolated
- Home input — optoisolated
- Selectable high-speed position latch input — optoisolated
- Selectable abort input for each axis — optoisolated

Dedicated Outputs (per axis)
- Analog motor command output with 16-bit DAC resolution
- Pulse and direction output for step motors
- PWM output also available for servo amplifiers
- Amplifier enable output
- Error output (one per controller)
- High-speed position compare output (per set of 4 axes)

Minimum Servo Loop Update Time

<table>
<thead>
<tr>
<th></th>
<th>STANDARD</th>
<th>-FAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–2 axes</td>
<td>62 µsec</td>
<td>31 µsec</td>
</tr>
<tr>
<td>3–4 axes</td>
<td>125 µsec</td>
<td>62 µsec</td>
</tr>
<tr>
<td>5–6 axes</td>
<td>156 µsec</td>
<td>94 µsec</td>
</tr>
<tr>
<td>7–8 axes</td>
<td>187 µsec</td>
<td>125 µsec</td>
</tr>
</tbody>
</table>

Maximum Encoder Feedback Rate
- 22 MHz

Maximum Stepper Rate
- 6 MHz (Full, half or microstep)

Power Requirements
- 20–80 VDC

Environmental
- Operating temperature: 0–70º C
- Humidity: 20–95% RH, non-condensing

Mechanical
- 1- thru 4-axis: 8.1” × 7.25” × 1.72”
- 5- thru 8-axis: 11.5” × 7.25” × 1.72”

Connectors
- Amplifier I/O: 44-pin HD Male D-sub
- General I/O: 44-pin HD Female D-sub
- Encoder: 15-pin HD Female D-sub
- Analog: 15-pin LD Male D-sub
- Extended I/O: 44-pin HD Male D-sub

Reduced feature set for -FAST.
Ethernet/RS232 Accelera Series, 1–8 axes

DMC-40x0 Series

Instruction Set

Ethernet
- DH: DHCP Configuration
- HS: Handle switch
- IA: Set IP address
- IH: Open IP handle
- IK: Ethernet port blocking
- MB: Modbus
- MW: Modbus wait
- SA: Send command
- SM: Subnet mask

Servo Motor
- AF: Analog feedback
- AG: Set amplifier gain
- AU: Set current loop gain
- AW: Report AMP-43040 bandwidth
- DV: Dual loop operation
- FA: Acceleration feedforward
- FV: Velocity feedforward
- IL: Integrator limit
- KD: Derivative constant
- KI: Integrator constant
- KP: Proportional constant
- NB: Notch bandwidth
- NF: Notch frequency
- NZ: Notch zero
- QP: Offset
- PL: Pole
- SH: Servo here
- TK: Peak torque
- TL: Tone time limit
- TM: Sample time

Stepper Motor
- KS: Stepper motor smoothing
- LC: Low current
- LS: Error magnitude
- YA: Step drive resolution
- YB: Step motor resolution
- YC: Encoder resolution
- YR: Error correction
- YS: Stepper position maintenance

Internal Sine Commutation
- BA: Brushless axis
- BB: Brushless phase
- BC: Brushless calibration
- BD: Brushless degrees
- BI: Brushless inputs
- BM: Brushless modulo
- BO: Brushless offset
- BS: Brushless setup
- BZ: Brushless zero

System Configuration
- BN: Burn parameters
- BP: Burn program
- BR: Brush motor enable
- BV: Burn variables and arrays
- BW: Brake Wait
- CC: Configure communications port
- CE: Configure encoder type
- CF: Configure unsolicited messages handle
- CI: Configure communication interrupt
- CW: Configure switches
- DE: Define dual encoder position
- DP: Define position
- DR: Data record update rate
- EI: Event interrupts
- EO: Echo
- IT: Independent smoothing
- LB: LCD Bias contrast
- LU: LCD Update
- LZ: Leading zeros format
- MO: Motor off
- MT: Motor type
- PF: Position format
- PW: Password
- QD: Download array
- RS: Reset
- R:\S: Master reset
- UI: User interrupt
- VF: Variable format

Math Functions
- @ABS[x]: Absolute value of x
- @ACOS[x]: Arc cosine of x
- @ASIN[x]: Arc sine of x
- @ATAN[x]: Arc tangent of x
- @ATAN2[x]: 1's complement of x
- @ASINH[x]: Hyperbolic cosine of x
- @ATAN2[x]: Fraction portion of x
- @INT[x]: Integer portion of x
- @SQRT[x]: Square root of x
- @TAN[x]: Tangent
- %: Modulus operator

Interrogation
- ID: AMP ID
- LA: List arrays
- LL: List labels
- LS: List program
- LV: List variables
- MG: Message command
- QH: Query hall state
- QR: Data record
- QU: Upload array
- QZ: Return data record information
- RL: Report latch
- RP: Report command position
- R:\V: Firmware revision information
- SC: Stop code
- TA: Tell amplifier status
- TB: Tell status
- TC: Tell error code
- TD: Tell dual encoder
- TE: Tell error
- TH: Tell handle
- TI: Tell input
- TP: Tell position
- TR: Trace program
- TS: Tell switches
- TT: Tell torque
- TV: Tell velocity
- TZ: Tell I/O configuration
- WH: Which handle

Programming
- BK: Breakpoint
- DA: Deallocate variables/arrays
- DL: Download program
- DM: Dimension arrays
- ED: Edit program
- ELSE: Conditional statement
- ENDIF: End of cond. statement
- EN: End program
- EX: Exit execution
- IF: If statement
- IN: Input variable
- JP: Jump
- JS: Jump to subroutine
- NO: No-operation—for comments
- RA: Record array
- RC: Record interval
- RD: Record data
- RE: Return from error routine
- REM: Remark program
- RI: Return from interrupt routine
- SL: Single step
- UL: Upload program
- XQ: Execute program
- YA: Data record variables
- ZS: Zero stack
- Comment

Error Control
- BL: Backward software limit
- ER: Error limit
- FL: Forward software limit
- LD: Limit disable
- QA: Encoder failure
- OE: Off-on-error function
- OT: Encoder failure period
- OV: Encoder failure voltage
- TW: Timeout for in-position

Trippoint
- AD: After distance
- AI: After input
- AM: After motion profiler
- AP: After absolute position
- AR: After relative distance
- AT: At speed
- AV: After vector distance
- MC: Motion complete
- MF: After motion—forward
- MR: After motion—reverse
- WT: Wait for time

Independent Motion
- AB: Abort motion
- AC: Acceleration
- BG: Begin motion
- DC: Deceleration
- FE: Find edge
- FI: Find index
- HM: Home
- HV: Home speed
- IP: Increment position
- IT: Smoothing time constant
- JG: Jog mode
- PA: Position absolute
- PR: Position relative
- PT: Position tracking
- SD: Switch deceleration
- SP: Speed
- ST: Stop

Contour Mode
- CD: Contour data
- CM: Contour mode
- DT: Contour time interval

PVT Mode
- PV: Position, velocity, time
- BT: Coordinate start

ECAM/Gearing
- EA: ECAM master
- EB: Enable ECAM
- EC: ECAM table index
- EG: ECAM go
- EM: ECAM modulus
- EP: ECAM interval
- EQ: Disengage ECAM
- ET: ECAM table entry
- EW: ECAM widen
- EY: ECAM cycle counter
- GA: Master axis for gearing
- GD: Engagement distance for gearing
- GM: Gantry mode
- GP: Correction for gearing
- GR: Gear ratio for gearing

Vector/Linear Interpolation
- CA: Define vector plane
- CR: Circular interpolation move
- CS: Clear motion sequence
- ES: Elliptical scaling
- IT: Smoothing time constant
- LE: Linear interpolation end
- LI: Linear interpolation segment
- LM: Linear interpolation mode
- ST: Stop motion
- TN: Tangent
- VA: Vector acceleration
- VP: Vector deceleration
- VE: Vector sequence end
- VM: Coordinated motion mode
- VP: Vector position
- VR: Vector speed ratio
- VS: Vector speed
- VV: Vector Velocity
DMC-40x0 Interconnect and Drive Options

ICM-42000 Interconnect Module (-I000)
The ICM-42000 resides inside the DMC-40x0 enclosure and breaks out the internal CPU board connector into convenient D-sub connectors for interface to external amplifiers and I/O devices. Eight 500 mA highside drive outputs are available (total current not to exceed 3 A). The ICM-42000 is user-configurable for a broad range of amplifier enable options including: High amp enable, Low amp enable, 5 V logic, 12 V logic, external voltage supplies up to 24 V and sinking or sourcing. Two ICMs are required for 5- thru 8-axis controllers.

ICM-42100 Sinusoidal Encoder Interpolation Module (-I100)
The ICM-42100 option resides inside the DMC-40x0 enclosure and accepts sinusoidal encoder signals instead of digital encoder signals as accepted by the ICM-42000. The ICM-42100 provides interpolation of up to four 1-volt differential sinusoidal encoders resulting in a higher position resolution. The AFn command selects sinusoidal interpolation where n specifies 2n interpolation counts per encoder cycle (n=5 to 12). For example, if the encoder cycle is 40 microns, AF10 results in 2^10=1024 counts per cycle, or a resolution of 39 nanometers per count. With the ICM-42100, the sinusoidal encoder inputs replace the main digital encoder inputs.

ICM-42200 Interconnect Module (-I200)
The ICM-42200 interconnect option resides inside the DMC-40x0 enclosure and provides a pin-out that is optimized for easy connection to external drives. The ICM-42200 uses 26-pin HD D-sub connectors for each axis that includes encoder, limit, home, and motor command signals.

AMP-430x0 2- and 4-axis 500W Servo Drives (-D3020, -D3040)
The AMP-430x0 resides inside the DMC-40x0 enclosure and contains four transconductance, PWM amplifiers for driving brushless or brush-type servo motors. Each amplifier drives motors operating at up to 7 Amps continuous, 10 Amps peak, 20—80 VDC. The gain settings of the amplifier are user-programmable at 0.4 Amp/Volt, 0.7 Amp/Volt and 1 Amp/Volt. The switching frequency is 60 kHz. The drive for each axis is software configurable to operate in either a chopper or inverter mode. The chopper mode is intended for operating low inductance motors. The amplifier offers protection for over-voltage, under-voltage, over-current, short-circuit and over-temperature. Two AMP-43040s are required for 5- thru 8-axis controllers. A shunt regulator option is available. A two-axis version, the AMP-43020 is also available.

AMP-43140 4-axis 20W Servo Drives (-D3140)
The AMP-43140 resides inside the DMC-40x0 enclosure and contains four linear drives for operating small, brush-type servo motors. The AMP-43140 requires a ± 12-30 VDC input. Output power is 20 W per amplifier or 60 W total. The gain of each transconductance linear amplifier is 0.1 A/V at 1 A maximum current. The typical current loop bandwidth is 4 kHz. An SSR option is available which guarantees absolutely no current during motor off.

SDM-44040 4-axis Stepper Drives (-D4040)
The SDM-44040 resides inside the DMC-40x0 enclosure and contains four drives for operating two-phase bipolar step motors. The SDM-44040 requires a single 12-30 VDC input. The unit is user-configurable for 1.4 A, 1.0 A, 0.75 A, or 0.5 A per phase and for full-step, half-step, 1/4 step or 1/16 step.

SDM-44140 4-axis Microstep Drives (-D4140)
The SDM-44140 resides inside the DMC-40x0 enclosure and contains four microstepping drives for operating two-phase bipolar stepper motors. The drives produce 64 microsteps per full step or 256 steps per full cycle which results in 12,800 steps/rev for a standard 200-step motor. The maximum step rate generated by the controller is 6,000,000 microsteps/second. The SDM-44140 drives motors operating at up to 3 Amps at 12 to 60 VDC (available voltage at motor is 10% less). There are four software-selectable current settings: 0.5 A, 1 A, 2 A and 3 A. Plus, a selectable low-current mode reduces the current by 75% when the motor is not in motion. No external heatsink is required.

Power Supplies — PSR Series
The PSR Series are regulated DC power supplies capable of operating from a 100/240 VAC input, at 50/60 Hz. The power supply includes a shunt regulator and blocking diode.

<table>
<thead>
<tr>
<th>Model</th>
<th>Power Rating</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSR-12-24</td>
<td>24 VDC @ 12 A cont.</td>
<td>9” × 6.5” × 2” 3.5 lbs.</td>
</tr>
<tr>
<td>PSR-6-48</td>
<td>48 VDC @ 6 A cont.</td>
<td>9” × 6.5” × 2” 3.5 lbs.</td>
</tr>
</tbody>
</table>

ICS D-type to Screw-Terminal Boards
Galil offers various ICS boards which break-out the DMC-40x0 D-type connectors into screw terminals for quick prototyping:

ICS-48015-M 15-pin HD male to terminals — encoder.
ICS-48115-F 15-pin LD female to terminals — analog.
ICS-48044-M 44-pin HD male to terminals — I/O.
ICS-48044-F 44-pin HD female to terminals — drive.
ICS-48032-F 44-pin HD female to terminals — breaks out and optically isolates the 32 extended I/O points. Configurable for inputs and outputs in banks of 8 bits. The ICS-48032-F must only be used with the extended I/O on the DMC-40x0.
ICS-48026-M 26-pin HD male to terminals — for ICM-42200.
DMC-40x0 Interconnect Options

All DMC-40x0 are ordered with an internal interconnect module (ICM) which breaks out and buffers the controller I/O and drive signals. 1-4 axis controllers require one ICM, 5-8 axis controllers require two, and can be mixed and matched from the following options.

(Key: HD=Hi-density, LD=Low-density, F=Female, M=Male, D=D-subminiature connector)

<table>
<thead>
<tr>
<th>ICM (Part Number)</th>
<th>ICM-42000 (-1000)</th>
<th>ICM-42100 (-1100)</th>
<th>ICM-422000 (-1200)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Purpose</td>
<td>Default ICM</td>
<td>Sine Interpolated Encoders</td>
<td>More convenient for external drives</td>
</tr>
<tr>
<td>Inside 40x0 Enclosure</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Breaks out I/O and Drive Signals</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Encoder connector</td>
<td>15-pin HD F D per axis</td>
<td>15-pin HD F D per axis</td>
<td>26-pin HD F D per axis</td>
</tr>
<tr>
<td>Axis Connector</td>
<td>44-pin HD M D per 4 axes</td>
<td>44-pin HD M D per 4 axes</td>
<td>On Encoder connector, and 44-pin HD M D per 4 axes</td>
</tr>
<tr>
<td>Analog In connector</td>
<td>15-pin LD M D</td>
<td>15-pin LD M D</td>
<td>15-pin LD M D</td>
</tr>
<tr>
<td>I/O Connector</td>
<td>44-pin HD F D</td>
<td>44-pin HD F D</td>
<td>44-pin HD F D</td>
</tr>
<tr>
<td>8 500mA high-side digital outs (max 3A)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Configurable Amp Enable</td>
<td>hi/lo, 5 V, 12 V, and ext. V, sink, source</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Accepts Quad and Pulse and Direction encoders and inputs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sine Encoder Interpolation</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>SSI and BISS options available</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

DMC-40x0 Drive Options

The DMC-40x0 can be optionally equipped with a multi-axis internal servo or stepper motor drive. 5-8 axis versions can mix and match two of the following drives.

<table>
<thead>
<tr>
<th>Drive Name (Part Number)</th>
<th>AMP-430x0 (-D30x0)</th>
<th>AMP-43140 (-D3140)</th>
<th>SDM-44040 (-D4040)</th>
<th>SDM-44140 (-D4140)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Type</td>
<td>Brushed/Brushless servo</td>
<td>Brushed servo</td>
<td>Stepper</td>
<td>Stepper</td>
</tr>
<tr>
<td>Axes</td>
<td>4 x=4, 2 x=2</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Current Drive</td>
<td>PWM</td>
<td>Linear</td>
<td>PWM</td>
<td>PWM</td>
</tr>
<tr>
<td>Axis power (Watts)</td>
<td>500</td>
<td>20 (60 max for 4 axes)</td>
<td>42</td>
<td>180</td>
</tr>
<tr>
<td>Cont. Current (Amps)</td>
<td>7</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Peak Current (Amps)</td>
<td>10</td>
<td>1</td>
<td>1.4</td>
<td>3.0</td>
</tr>
<tr>
<td>Voltage Bus (VDC)</td>
<td>20-80 (160 available)</td>
<td>+/- 12-30 bipolar</td>
<td>12-30</td>
<td>12-60</td>
</tr>
<tr>
<td>Gains</td>
<td>0.4, 0.7, 1.0 A/V</td>
<td>0.1 (0.01 available) A/V</td>
<td>0.5, 0.75, 1.0, 1.4 A</td>
<td>0.5, 1.0, 2.0, 3.0 A</td>
</tr>
<tr>
<td>Switching Freq (Khz)</td>
<td>60 (140 available)</td>
<td>-</td>
<td>27 (nominal)</td>
<td>60</td>
</tr>
<tr>
<td>Typical Current Loop Bandwidth (Khz) *</td>
<td>2-8</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Drive Modes</td>
<td>Inverter, Chopper</td>
<td>Linear</td>
<td>1, 2, 4, 16 microstep</td>
<td>64 microstep</td>
</tr>
<tr>
<td>Commutation</td>
<td>Trap w/ 120° Halls</td>
<td>Brushed only</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Min. Inductance (mH)</td>
<td>0.2-0.5</td>
<td>0.2</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Over Voltage</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Under Voltage</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Over Current</td>
<td>Yes</td>
<td>Fused</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Short circuit</td>
<td>Yes</td>
<td>Fused</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Over temp</td>
<td>Yes</td>
<td>Thermal Shutdown</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>ELO input</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Other Notes</td>
<td>Shunt option Adjustable current loop</td>
<td>SSR option, disconnects power at startup</td>
<td>Low current feature</td>
<td>Low current feature</td>
</tr>
</tbody>
</table>

Current Loop bandwidth is system dependent. Contact Galil for unlisted upgrade options for all above ICMs and drives.
Ethernet/RS232 Accelera Series, 1–8 axes

DMC-40x0 Series

Ordering Information

1- through 8-axis Models:

<table>
<thead>
<tr>
<th>Number of Axes</th>
<th>Interconnect (1st four axes)</th>
<th>Shunt Regulator (optional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: 1-axis</td>
<td>000: Digital encoder</td>
<td></td>
</tr>
<tr>
<td>2: 2-axes</td>
<td>100: Sinusoidal encoder</td>
<td></td>
</tr>
<tr>
<td>3: 3-axes</td>
<td>200: Separate Axis Connectors</td>
<td></td>
</tr>
<tr>
<td>4: 4-axes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5: 5-axes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6: 6-axes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7: 7-axes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8: 8-axes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Communication</th>
<th>Drive — Axes 1–4 (optional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>012: one Ethernet port and two RS232 ports</td>
<td>3020: two 500 Watt servo motor drives</td>
</tr>
<tr>
<td></td>
<td>3040: four 500 Watt servo motor drives</td>
</tr>
<tr>
<td></td>
<td>3140: four 20 Watt servo motor drives</td>
</tr>
<tr>
<td></td>
<td>4040: four 1.4 A stepper motor drives — Full, Half, 1/4, 1/16</td>
</tr>
<tr>
<td></td>
<td>4140: four microstep drives</td>
</tr>
</tbody>
</table>

Interconnect

- Interconnect (2nd four axes)
 - 000: Digital encoder
 - 100: Sinusoidal encoder
 - 200: Separate Axis Connectors

SDM and AMP Drives

- **100mA**: 100 mA output capacity for AMP-43140. Default is 1 Amp
- **ISAMP**: Isolation of power between each AMP amplifier
- **ISCNTL**: Isolation of controller power from amplifier power
- **SSR**: No current during motor off

CMB Communication board

- **5 V**: 5 V for the extended I/O. 3.3 V is standard
- **422**: RS422 on main, auxiliary or both

Options

DMC Controller

- **DIN**: DIN Rail mounting option
- **12 V**: 12 VDC controller power
- **16BIT**: 16-Bit ADC for analog inputs. 12-bits is standard
- **NRExxxx**: Customized upgrades
- **-ETL**: Option for ETL certification and documentation

SDM and AMP Drives

- **100mA**: 100 mA output capacity for AMP-43140. Default is 1 Amp
- **ISAMP**: Isolation of power between each AMP amplifier
- **ISCNTL**: Isolation of controller power from amplifier power
- **SSR**: No current during motor off

ICM Interconnect board

- **SSI**: SSI Encoders. Quadrature encoders are standard
- **DIFF**: Differential analog motor command outputs. Single-ended is standard
- **LAEN**: Low Amp Enable. High Amp Enable is standard
- **24 V**: 24 V Amp enable-sourcing. 5 V sinking is standard
- **STEP**: Differential Step/Direction outputs. Single-ended is standard
- **I100**: Specify sinusoidal encoder. Digital is standard
- **I200**: Specify 26-pin axis connectors (recommended if using external drives)
- **HAEN**: High amplifier enable
- **SINK**: Sinking amplifier enable
- **SOURCE**: Sourcing amplifier enable

Note: If a special option is required, place the appropriate OPT CODE inside a parenthesis directly following the respective DMC, CMB, ICM, SDM or AMP part numbers. Use commas for multiple options within a parenthesis.

Ordering Information continued on the next page.
Ethernet/RS232 Accelera Series, 1–8 axes

DMC-40x0 Series

Ordering Information — continued

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>QUANTITY 1</th>
<th>QUANTITY 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMC-4010-C012-I000</td>
<td>1-axis Ethernet/RS232 controller with ICM-42000</td>
<td>$1595</td>
<td>$945</td>
</tr>
<tr>
<td>DMC-4020-C012-I000</td>
<td>2-axis Ethernet/RS232 controller with ICM-42000</td>
<td>$1695</td>
<td>$995</td>
</tr>
<tr>
<td>DMC-4030-C012-I000</td>
<td>3-axis Ethernet/RS232 controller with ICM-42000</td>
<td>$1995</td>
<td>$1095</td>
</tr>
<tr>
<td>DMC-4040-C012-I000</td>
<td>4-axis Ethernet/RS232 controller with ICM-42000</td>
<td>$2295</td>
<td>$1195</td>
</tr>
<tr>
<td>DMC-4050-C012-I000-I000</td>
<td>5-axis Ethernet/RS232 controller with ICM-42000</td>
<td>$2695</td>
<td>$1495</td>
</tr>
<tr>
<td>DMC-4060-C012-I000-I000</td>
<td>6-axis Ethernet/RS232 controller with ICM-42000</td>
<td>$2895</td>
<td>$1595</td>
</tr>
<tr>
<td>DMC-4070-C012-I000-I000</td>
<td>7-axis Ethernet/RS232 controller with ICM-42000</td>
<td>$3045</td>
<td>$1695</td>
</tr>
<tr>
<td>DMC-4080-C012-I000-I000</td>
<td>8-axis Ethernet/RS232 controller with ICM-42000</td>
<td>$3195</td>
<td>$1795</td>
</tr>
</tbody>
</table>

ICM-42100 (-I100)

Specify sinusoidal encoder inputs instead of digital encoder inputs. Replace -I000 with -I100

Add $100

ICM-42200 (-I200)

Specify individual 26-pin HD connectors for each axis. Replace -I000 with -I200

Add $no

AMP-43040 (-D3040)

Four 500 W servo motor drives (use one for 1–4 axis models; two for 5–8 axes models). Add to above

$700

AMP-43020 (-D3020)

Two 500 Watt servo motor drives

$450

AMP-43140 (-D3140)

Four 20 Watt servo motor drives

$175

SR-49000 (-SR90)

Shunt regulator (90 V)

$50

SDM-44040 (-D4040)

Four 1.4 A stepper motor drives—Full, Half, 1/4, 1/16

$175

SDM-44140 (-D4140)

Four microstep drives

$600

SSR

No current for motor off (for AMP-43140 only)

$75

PSR-12-24

Power supply, 12 A, 24 VDC. Includes shunt regulator

$250

PSR-6-48

Power supply, 6 A, 48 VDC. Includes shunt regulator

$250

ICS-48015-M

15-pin D HD male to screw terminals—-for encoder signals

$50

ICS-48115-F

15-pin D LD female to screw terminals—-for analog inputs

$50

ICS-48044-M

44-pin D HD male to screw terminals—-for general I/O

$75

ICS-48044-F

44-pin D HD female to screw terminals—-for external drive signals

$75

ICS-48032-F

44-pin D HD female to screw terminals—-for extended I/O. Provides optical isolation of 32 extended I/O points

$125

ICS-48026-M

26-pin D HD male to screw terminals—-for axis connectors on ICM-42200

$75

-ETL

Option for ETL certification and documentation

Free download

GalilTools-Lite

Editor, Terminal, Watch Tools. Includes communication library for developers—supports C++, VB, C#, LabVIEW and more

$195

ActiveX Tool Kit

Custom ActiveX controls for Microsoft platforms

$595

Galil offers additional quantity discounts for purchases between 1 and 100. Consult Galil for a quotation.
Product Description

The DMC-18x6 PCI bus motor controllers belong to Galil’s latest generation motion controller family: the Accelera Series. Incorporating a 32-bit RISC-based microcomputer, these controllers offer high-speed performance and processing power. Speed improvements include acceptance of encoder inputs up to 22 MHz, servo update rates as low as 31 microseconds/axis, and command execution times as low as 40 microseconds. While the DMC-18x6 offers performance enhancements compared to prior generation PCI controllers, the programming language and 100-pin SCSI connector are virtually the same, making conversion to the DMC-18x6 quick and easy.

The DMC-18x6 is available in one through eight-axis formats, and each axis is user-configurable for stepper or servo motor operation. The controller includes optically isolated inputs including a forward limit, reverse limit and home input for each axis, in addition to uncommitted analog and digital I/O. Up to two encoders are accepted for each servo axis.

Standard programming features include PID compensation with velocity and acceleration feedforward, multitasking for simultaneously running up to eight programs, and I/O processing commands for synchronizing motion with external events. Modes of motion include point-to-point positioning, position tracking, jogging, linear and circular interpolation, contouring, PVT, electronic gearing and ECAM. Like all Galil controllers, the DMC-18x6 controllers use Galil’s popular, intuitive command language which makes them very easy to program. The new GalilTools software further simplifies system set-up with “one-button” servo tuning and real-time display of position and velocity information.

Features

- PCI card in 1 through 8 axis versions:
 DMC-18x6 where x=1,2,3,4,5,6,7,8 axes
- User-configurable for stepper or servo motors on any combination of axes. Optional firmware for piezo-ceramic motors. Configurable for sinusoidal commutation
- Accepts up to 22 MHz encoder frequencies for servos. Outputs up to 6 MHz for steppers
- PID compensation with velocity and acceleration feedforward, integration limits, notch filter and low-pass filter
- Modes of motion include jogging, point-to-point positioning, contouring, PVT, linear and circular interpolation, electronic gearing and electronic cam. Features elliptical scaling, slow-down around corners, infinite segment feed and feedrate override
- Over 200 English-like commands including conditional statements and event triggers
- Non-volatile memory for programs, variables and arrays. Multitasking for concurrent execution of up to eight programs
- Optically isolated home input and forward and reverse end-of-travel limits accepted for every axis
- 1- through 4-axis: 8 isolated inputs and 8 outputs
 5- through 8-axis: 16 isolated inputs, 16 outputs, 8 digital inputs
- High speed position latch for each axis and output compare
- 8 uncommitted analog inputs
- Dual encoder inputs for each servo axis
- Expansion for 64 I/O with optional DB-14064 board
- 100-pin SCSI connectors for each set of 4 axes. ICM-2900 or ICM-1900 breaks-out 100-pin cable into screw terminals
- AMP-19540 connects to PCI controller with 100-pin cable and provides four amplifiers for 500 W servos
- Communication drivers for Windows, Mac OSX, and Linux
- Custom hardware and firmware options available
PCI Bus Accelera Series, 1–8 axes

DMC-18x6 Series

Specifications

System Processor
- RISC-based, clock multiplying processor with DSP functions

Communications Interface
- PCI with bi-directional FIFO and Dual Port RAM
- 32-bit PCI interface. 64-bit compatible. 5 V/3.3 V
Commands are sent in ASCII. A binary communication mode is also available as a standard feature

Modes of Motion:
- Point-to-point positioning
- Position Tracking
- Jogging
- 2D Linear and Circular Interpolation with feedrate override
- Linear Interpolation for up to 8 axes
- Tangential Following
- Helical
- Electronic Gearing with multiple masters and ramp-to-gearing
- Gantry Mode
- Electronic Cam
- Contouring
- PVT (Position-Velocity-Time)
- Teach and playback

Memory
- Program memory size — 2000 lines × 80 characters
- 510 variables
- 16,000 total array elements in up to 30 arrays

Filter
- PID with velocity and acceleration feedforward
- Notch filter and low-pass filter
- Dual-loop control for backlash compensation
- Velocity smoothing to minimize jerk
- Integration limit
- Torque limit
- Offset adjustment

Kinematic Ranges
- Position: 32 bit (± 2.15 billion counts per move; automatic rollover; no limit in jog or vector modes)
- Velocity: Up to 22 million counts/sec for servo motors
- Acceleration: Up to 1 billion counts/sec²

Uncommitted Digital I/O

<table>
<thead>
<tr>
<th>DIGITAL INPUTS</th>
<th>DIGITAL OUTPUTS</th>
<th>ANALOG INPUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMC-1816 thru -1846</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>DMC-1856 thru -1886</td>
<td>24</td>
<td>16</td>
</tr>
</tbody>
</table>

High Speed Position Latch
- Uncommitted inputs 1-4 latch X,Y,Z,W and 9-12 latch E,F,G,H axes (latches within 40 microseconds with optoisolation)

Dedicated Inputs (per axis)
- Main encoder inputs — Channel A, A-, B, B-, I, I- (± 12 V or TTL)
- Dual encoder (for axes configured as servo) — Channel A, A-, B, B-
- Forward and reverse limit inputs — optoisolated
- Home input — optoisolated
- Selectable high-speed position latch input — optoisolated
- Selectable abort input for each axis — optoisolated

Dedicated Outputs (per axis)
- Analog motor command output with 16-bit DAC resolution
- Pulse and direction output for step motors
- PWM output also available for servo amplifiers
- Amplifier enable output
- Error output (one per controller)
- High-speed position compare output (1 per set of 4 axes)

Minimum Servo Loop Update Time

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>FAST†</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–2 axes:</td>
<td>62 μsec</td>
</tr>
<tr>
<td>3–4 axes:</td>
<td>125 μsec</td>
</tr>
<tr>
<td>5–6 axes:</td>
<td>156 μsec</td>
</tr>
<tr>
<td>7–8 axes:</td>
<td>187 μsec</td>
</tr>
</tbody>
</table>

Maximum Encoder Feedback Rate
- 22 MHz

Maximum Stepper Rate
- 6 MHz (Full, half or microstep)

Power Requirements
- DMC-18x6: +5V 700 mA
 +3.3V 600 mA
 +12V 150 mA
 -12V 40 mA

Environmental
- Operating temperature: 0–70º C
- Humidity: 20–95% RH, non-condensing

Mechanical
- DMC-18x6: 1–4 axes: 7.850” × 4.2”
 5–8 axes: 12.28” × 4.2”

Connectors
- 100-pin HD SCSI for axes 1–4 and 5–8
- CB-50–100–18X6 required for 5–8 axes. (Occupies two PCI bays, one PCI slot)

†Reduced feature set for -FAST.
Hardware Accessories

ICM-2900 Interconnect Module
The ICM-2900 breaks-out the 100-pin SCSI cable into screw-type terminals. One ICM-2900 is required for each set of four axes. The ICM-2900-FL has flanges which allow standard screw-type panel mounting. Specify -OPTO for optoisolated outputs. Specify -HAEN for high amp enable and -LAEN for low amp enable. If auxiliary encoders are to be used, use an ICM-2908, a CB-36-25, and a CABLE -36-1M.

AMP-19540 Interconnect with Four 500 Watt Servo Drives
Galil’s AMP-19540 is a 4-axis amplifier for driving brushed or brushless servo motors up to 500 Watts each. By interfacing directly to Galil’s DMC-18x6 PCI bus controllers, it provides a cost-effective motor controller/drive solution for multi-axis applications. The AMP-19540 contains four transconductance, PWM amplifiers. Each amplifier operates at 18 V to 80 V DC, up to 7 Amps continuous, 10 Amps peak. The AMP-19540 gain setting is easily configured with jumpers. The PWM switching frequency is 60 kHz. The AMP-19540 enclosure has dimensions of 6.8” × 8.75” × 1”. It interfaces to a PCI bus controller with a single, 100-pin high density SCSI cable. Signals for each axis are brought out through D-type connectors located on the AMP-19540. For applications with less than three axes, the AMP-19520 two-axis model is available. A shunt regulator option is also available. CE certified.

DB-28104 Sinusoidal Encoder Interpolation Board
The DB-28104 mounts to the DMC-18x6 50-pin header and provides interpolation of up to four 1-volt differential sinusoidal encoders resulting in a higher position resolution. The AF n command selects sinusoidal interpolation where n specifies 2^n interpolation counts per encoder cycle (n=5 to 12). For example, if the encoder cycle is 40 microns, AF10 results in 2^10=1024 counts per cycle, or a resolution of 39 nanometers per count. Each sinusoidal encoder connects to the DB-28104 through its own 9-pin D-sub connector. 3.510” × 3.075”.

DB-14064 I/O Expansion
The DB-14064 is an optional board which provides 64 additional I/O for the DMC-18x6 controllers. This board mounts directly onto the back of the controller and provides 64 I/O points configurable by the user for inputs or outputs. The I/O is accessible through two 50-pin headers.
PCI Bus Accelera Series, 1–8 axes

DMC-18x6 Series

Ordering Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>QUANTITY 1</th>
<th>QUANTITY 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMC-1816</td>
<td>1-axis Accelera, PCI</td>
<td>$1095</td>
<td>$795</td>
</tr>
<tr>
<td>DMC-1826</td>
<td>2-axis Accelera, PCI</td>
<td>$1495</td>
<td>$875</td>
</tr>
<tr>
<td>DMC-1836</td>
<td>3-axis Accelera, PCI</td>
<td>$1895</td>
<td>$935</td>
</tr>
<tr>
<td>DMC-1846</td>
<td>4-axis Accelera, PCI</td>
<td>$2195</td>
<td>$995</td>
</tr>
<tr>
<td>DMC-1856</td>
<td>5-axis Accelera, PCI</td>
<td>$2595</td>
<td>$1345</td>
</tr>
<tr>
<td>DMC-1866</td>
<td>6-axis Accelera, PCI</td>
<td>$2795</td>
<td>$1425</td>
</tr>
<tr>
<td>DMC-1876</td>
<td>7-axis Accelera, PCI</td>
<td>$2995</td>
<td>$1525</td>
</tr>
<tr>
<td>DMC-1886</td>
<td>8-axis Accelera, PCI</td>
<td>$3195</td>
<td>$1595</td>
</tr>
<tr>
<td>CB-50-100-1886</td>
<td>50- to 100-pin converter board; incl. two ribbon cables for DMC-1856 to -1886</td>
<td>$75</td>
<td>$50</td>
</tr>
<tr>
<td>CABLE-100-1M</td>
<td>100-pin HD cable in 1 meter length</td>
<td>$165</td>
<td>$125</td>
</tr>
<tr>
<td>CABLE-100-2M</td>
<td>100-pin HD cable in 2-meter length</td>
<td>$180</td>
<td>$135</td>
</tr>
<tr>
<td>CABLE-100-4M</td>
<td>100-pin HD cable in 4 meter length</td>
<td>$195</td>
<td>$145</td>
</tr>
<tr>
<td>ICM-2900-FL</td>
<td>Interconnect module (use 1 for every 4 axes). Specify -HAEN for high amp enable or -LAEN for low amp enable. Specify -FL for flange</td>
<td>$295</td>
<td>$195</td>
</tr>
<tr>
<td>ICM-2900-OPTO</td>
<td>ICM with optoisolated outputs</td>
<td>$345</td>
<td>$245</td>
</tr>
<tr>
<td>AMP-19520</td>
<td>2-axis amplifier for 500 W servo motors</td>
<td>$595</td>
<td>$395</td>
</tr>
<tr>
<td>AMP-19540</td>
<td>4-axis amplifier for 500 W servo motors</td>
<td>$795</td>
<td>$495</td>
</tr>
<tr>
<td>AMP-19540-SR</td>
<td>Shunt regulator option for AMP-195x0</td>
<td>$50</td>
<td>$25</td>
</tr>
<tr>
<td>DB-28104</td>
<td>Sinusoidal Encoder Interpolation Board</td>
<td>$395</td>
<td>$245</td>
</tr>
<tr>
<td>DB-14064</td>
<td>Attachment board for 64 additional I/O</td>
<td>$295</td>
<td>$195</td>
</tr>
<tr>
<td>CB-50-80</td>
<td>50-pin to 80-pin adaptor for DB-14064</td>
<td>$75</td>
<td>$50</td>
</tr>
<tr>
<td>CB-36-25</td>
<td>36-pin adaptor for aux encoders using ICM-2908</td>
<td>$50</td>
<td>$45</td>
</tr>
<tr>
<td>CABLE-36-1M</td>
<td>36-pin HD cable for aux encoders using ICM-2908</td>
<td>$90</td>
<td>$75</td>
</tr>
<tr>
<td>ICM-2908</td>
<td>Aux encoder breakout</td>
<td>$125</td>
<td>$95</td>
</tr>
<tr>
<td>CABLE-26-25</td>
<td>Ribbon cable for aux encoders with ICM-1900 or AMP-19540</td>
<td>$15</td>
<td>$15</td>
</tr>
<tr>
<td>GalilTools-Lite</td>
<td>Editor, Terminal, Watch Tools. Includes communication library for developers-supports C++, VB, C#, LabVIEW and more</td>
<td>Free download</td>
<td></td>
</tr>
<tr>
<td>GalilTools</td>
<td>Above with Scope and Tuner</td>
<td>$195</td>
<td></td>
</tr>
<tr>
<td>ActiveX Tool Kit</td>
<td>Custom ActiveX controls for Microsoft platforms</td>
<td>$595</td>
<td></td>
</tr>
</tbody>
</table>

Galil offers additional quantity discounts for purchases between 1 and 100. Consult Galil for a quotation.
Galil’s Econo Series motion controllers deliver precise, multi-axis control in a low-cost package. Prices for the 4-axis Econo motor controllers are as low as $395 in 1,000 quantities which is less than $100 per axis. Econo controllers don’t stint on performance and can handle any mode of motion with precision and ease. Advanced coordinated motion allows for tightly coupled, high-speed motion among axes without having to burden the host computer.

- Available with Ethernet/RS232/USB or as PCI card
 - DMC-41x3 Ethernet 100BASE-T, USB
 - DMC-18x2 PCI card, 1–4 axis models.
 - DMC-21x3 Ethernet 10BASE-T, (1) RS232 ports up to 19.2b
- Mix-and-Match stepper and servo motors
- Handles virtually any mode of motion with ease
- Multitasking for running up to eight programs simultaneously
- Uncommitted inputs and outputs
- DMC-41x3 available as card-level or box-level
- Compact size: 1–4 axis DMC-2143: 4.25" × 7.0"
 - 5–8 axis DMC-2183: 4.25" × 10.75"
 - 1–4 axis DMC-4143: 8.1" × 7.3" × 1.3"
 - 5–8 axis DMC-4183: 11.5" × 7.3" × 1.3"

Plug-in Amplifier Options

The DMC-21x3 and DMC-41x3 are available with plug-in, multi-axis drives which minimize space, cost and wiring. Drive options are available for stepper and servo motors. The DMC-21x3 and DMC-41x3 controllers can also be easily connected to external drives of any power range. The AMP-195x0, 2- and 4-axis packaged drive is available for the DMC-18x2 PCI controller.
Product Description

The DMC-41x3 motion controller is Galil’s latest generation Econo motor controller. Compared with the DMC-21x3 Econo controller, the DMC-41x3 offers the following enhancements: 100BASE-T Ethernet, aux RS232 port, USB port, uncommitted analog inputs, accepts 15 MHz encoder frequencies, and faster sample frequencies. The DMC-41x3 also accommodates the same stepper and servo motor drives used in the DMC-40x0 Accelera series and allows two 4-axis 500 W drives to be installed in the 8-axis controller package.

The DMC-41x3 is available as a box-level or card-level motion controller. The unit operates stand-alone or interfaces to a PC with Ethernet 10/100BASE-T, or USB. It includes optically isolated I/O in addition to analog inputs and outputs. The DMC-41x3 controller and drive unit accepts power from a single 20–60 VDC source.

The DMC-41x3 is available in one through eight axis formats, and each axis is user-configurable for stepper or servo motor operation. Standard programming features include PID compensation with velocity and acceleration feedforward, multitasking for simultaneously running up to eight programs, and I/O processing for synchronizing motion with external events. Modes of motion include point-to-point positioning, position tracking, jogging, linear and circular interpolation, contouring, electronic gearing and ECAM. Like all Galil controllers, the DMC-41x3 controllers use Galil’s popular, intuitive command language, making them very easy to program. GalilTools servo design software further simplifies system set-up with “one-button” servo tuning and real-time display of position and velocity information.

Features

- Packaged controller in 1 through 8 axis versions: DMC-41x3 where x=1,2,3,4,5,6,7,8 axes
- 10/100BASE-T Ethernet port with Auto MDIX
- (1) USB port—main
- (1) RS232 port up—aux
- User-configurable for stepper or servo motors on any combination of axes. Optional firmware for piezo-ceramic motors. Configurable for sinusoidal commutation
- Accepts up to 15 MHz encoder frequencies for servos. Outputs pulses up to 3 MHz for steppers
- PID compensation with velocity and acceleration feedforward, integration limits, notch filter and low-pass filter
- Modes of motion include jogging, point-to-point positioning, contouring, PVT, linear and circular interpolation, electronic gearing and electronic cam. Features elliptical scaling, slow-down around corners, infinite segment feed and feedrate override
- Over 200 English-like commands including conditional statements and event triggers
- Non-volatile memory for programs, variables and arrays. Multitasking for concurrent execution of up to eight programs
- Optically isolated home input and forward and reverse end-of-travel limits for every axis
- Uncommitted, isolated inputs and isolated outputs
 - 1- through 4-axis models: 8 inputs and 8 outputs
 - 5- through 8-axis models: 16 inputs and 16 outputs
- High speed position latch for each axis and output compare
- 8 uncommitted analog inputs
- Dual encoder inputs for each servo axis
- Accepts single 20–60 VDC input
- Available with internal stepper and servo drives. Or, connect to external drives of any power range
- Available as box-level or with metal enclosure
- Communication drivers for Windows, Mac OSX, and Linux
- Custom hardware and firmware options available
Ethernet/RS232/USB Econo Series, 1–8 axes

DMC-41x3 Series

Specifications

System Processor
■ RISC-based, clock multiplying processor with DSP functions

Communications Interface
■ (1) 10/100BASE-T Ethernet port with Auto MDIX
■ (1) USB port — main
■ (1) RS232 port — aux

Commands are sent in ASCII. A binary communication mode is also available as a standard feature

Modes of Motion:
■ Point-to-point positioning
■ Position Tracking
■ Jogging
■ 2D Linear and Circular Interpolation with feedrate override
■ Linear Interpolation for up to 8 axes
■ Tangential Following
■ Helical
■ Electronic Gearing with multiple masters and ramp-to-gearing
■ Gantry Mode
■ Electronic Cam
■ Contouring
■ PVT (Position-Velocity-Time)
■ Teach and playback

Memory
■ Program memory size — 2000 lines × 80 characters
■ 510 variables
■ 16,000 total array elements in up to 30 arrays

Filter
■ PID with velocity and acceleration feedforward
■ Notch filter and low-pass filter
■ Dual-loop control for backlash compensation
■ Velocity smoothing to minimize jerk
■ Integration limit
■ Torque limit
■ Offset adjustment

Kinematic Ranges
■ Position: 32 bit (± 2.15 billion counts per move; automatic rollover; no limit in jog or vector modes)
■ Velocity: Up to 15 million counts/sec for servo motors
■ Acceleration: Up to 1 billion counts/sec²

Uncommitted I/O

<table>
<thead>
<tr>
<th>I/O Type</th>
<th>Isolated Inputs</th>
<th>Isolated Outputs</th>
<th>Analog Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMC-4113 thru -4143</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>DMC-4153 thru -4183</td>
<td>16</td>
<td>16</td>
<td>8</td>
</tr>
</tbody>
</table>

High Speed Position Latch
■ Uncommitted inputs 1–4 latch A,B,C,D and 9–12 latch E, F, G, H axes (lathe within 40 microseconds with optoisolation)

Dedicated Inputs (per axis)
■ Main encoder inputs — Channel A, A-, B,B-, I, I- (± 12 V or TTL)
■ Dual encoder (for axes configured as servo) — Channel A, A-, B, B-
■ Forward and reverse limit inputs — optoisolated
■ Home input — optoisolated
■ Selectable high-speed position latch input — optoisolated
■ Selectable abort input for each axis — optoisolated

Dedicated Outputs (per axis)
■ Analog motor command output with 16-bit DAC resolution
■ Pulse and direction output for step motors
■ PWM output also available for servo amplifiers
■ Amplifier enable output
■ Error output (one per controller)
■ High-speed position compare output (per set of 4 axes)

Minimum Servo Loop Update Time

<table>
<thead>
<tr>
<th>Standard</th>
<th>-FAST*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–2 axes:</td>
<td>125 µsec</td>
</tr>
<tr>
<td>3–4 axes:</td>
<td>250 µsec</td>
</tr>
<tr>
<td>5–6 axes:</td>
<td>375 µsec</td>
</tr>
<tr>
<td>7–8 axes:</td>
<td>500 µsec</td>
</tr>
</tbody>
</table>

Maximum Encoder Feedback Rate
■ 15 MHz

Maximum Stepper Rate
■ 3 MHz (Full, half or microstep)

Power Requirements
■ 20–60 VDC

Environmental
■ Operating temperature: 0–70º C
■ Humidity: 20–95% RH, non-condensing

Mechanical
■ 1- thru 4-axis: 8.1” × 7.25” × 1.5”
■ 5- thru 8-axis: 11.5” × 7.25” × 1.5”

Connectors
■ General I/O: 44-pin HD Female D-sub
■ Axes: 26-pin HD Female D-sub
■ Analog: 15-pin LD Male D-sub

* Reduced feature set for -FAST.
DMC-41x3 Series

DMC-41x3 Interconnect and Drive Options

AMP-430x0 2- and 4-axis 500W Servo Drives (-D3020, -D3040)
The AMP-43040 resides inside the DMC-41x3 enclosure and contains four transconductance, PWM amplifiers for driving brushless or brush-type servo motors. Each amplifier drives motors operating at up to 7 Amps continuous, 10 Amps peak, 20–55 VDC. The gain settings of the amplifier are user-programmable at 0.4 Amp/Volt, 0.7 Amp/Volt and 1 Amp/Volt. The switching frequency is 60 kHz. The drive for each axis is software configurable to operate in either a chopper or inverter mode. The chopper mode is intended for operating low inductance motors. The amplifier offers protection for over-voltage, under-voltage, over-current, short-circuit and over-temperature. Two AMP-43040s are required for 5- thru 8-axis controllers. A shunt regulator option is available. A two-axis version, the AMP-43020 is also available.

AMP-43140 4-axis 20W Servo Drives (-D3140)
The AMP-43140 resides inside the DMC-41x3 enclosure and contains four linear drives for operating small, brush-type servo motors. The AMP-43140 requires a ±12-30 VDC input. Output power is 20 W per amplifier or 60 W total. The gain of each transconductance linear amplifier is 0.1 A/V at 1 A maximum current. The typical current loop bandwidth is 4 kHz. An SSR option is available which guarantees absolutely no current during motor off.

SDM-44040 4-axis Stepper Drives (-D4040)
The SDM-44040 resides inside the DMC-41x3 enclosure and contains four drives for operating two-phase bipolar step motors. The SDM-44040 requires a single 12-30 VDC input. The unit is user-configurable for 1.4 A, 1.0 A, 0.75 A, or 0.5 A per phase and for full-step, half-step, 1/4 step or 1/16 step.

SDM-44140 4-axis Microstep Drives (-D4140)
The SDM-44140 resides inside the DMC-41x3 enclosure and contains four microstepping drives for operating two-phase bipolar stepper motors. The drives produce 64 microsteps per full step or 256 steps per full cycle which results in 12,800 steps/rev for a standard 200-step motor. The maximum step rate generated by the controller is 3,000,000 microsteps/second. The SDM-44140 drives motors operating at up to 3 Amps at 12 to 60 VDC (available voltage at motor is 10% less). There are four software-selectable current settings: 0.5 A, 1 A, 2 A and 3 A. Plus, a selectable low-current mode reduces the current by 75% when the motor is not in motion. No external heatsink is required.

Power Supplies — PSR Series
The PSR Series are regulated DC power supplies capable of operating from a 100/240 VAC input, at 50/60 Hz. The power supply includes a shunt regulator and blocking diode.

<table>
<thead>
<tr>
<th>Model</th>
<th>Power Rating</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSR-12-24</td>
<td>24 VDC @ 12 A cont.</td>
<td>9” × 6.5” × 2” 3.5 lbs.</td>
</tr>
<tr>
<td>PSR-6-48</td>
<td>48 VDC @ 6 A cont.</td>
<td>9” × 6.5” × 2” 3.5 lbs.</td>
</tr>
</tbody>
</table>

ICS D-type to Screw-Terminal Boards
Galil offers various ICS boards which break-out the DMC-41x3 D-type connectors into screw terminals for quick prototyping:
- **ICS-48115-F** 15-pin LD female to terminals—analog.
- **ICS-48026-M** 26-pin HD male to terminals—for axes.
- **ICS-48044-M** 44-pin HD male to terminals—I/O.

Box version of the DMC-41x3 controller
Ethernet/RS232/USB Econo Series, 1–8 axes

DMC-41x3 Series

Ordering Information

1- through 8-axis Models:

<table>
<thead>
<tr>
<th>OPT CODE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN</td>
<td>DIN Rail mounting option</td>
</tr>
<tr>
<td>12 V</td>
<td>12 VDC controller power</td>
</tr>
<tr>
<td>16BIT</td>
<td>16-Bit ADC for analog inputs. 12-bits is standard</td>
</tr>
<tr>
<td>NRExxx</td>
<td>Customized upgrade</td>
</tr>
<tr>
<td>422</td>
<td>RS422 on auxiliary</td>
</tr>
<tr>
<td>SSI</td>
<td>SSI encoders. Quadrature encoders are standard</td>
</tr>
<tr>
<td>BISS</td>
<td>BISS encoders. Quadrature encoders are standard</td>
</tr>
<tr>
<td>TRES</td>
<td>Termination resistors</td>
</tr>
<tr>
<td>4-20mA</td>
<td>4-20mA analog inputs</td>
</tr>
<tr>
<td>HSRC</td>
<td>High power sourcing outputs (default low power sinking)</td>
</tr>
</tbody>
</table>

Drive — Axes 5 – 8

optional

- 3020: two 500 Watt servo motor drives
- 3040: four 500 Watt servo motor drives
- 3140: four 20 Watt servo motor drives
- 4040: four 1.4 A stepper motor drives — Full, Half, 1/4, 1/16
- 4140: four microstep drives

optional if not using Galil drives. Required for AMPs and SDMs

Shunt Regulator

optional (if not using Galil drives)

- 3020: two 500 Watt servo motor drives
- 3040: four 500 Watt servo motor drives
- 3140: four 20 Watt servo motor drives
- 4040: four 1.4 A stepper motor drives — Full, Half, 1/4, 1/16
- 4140: four microstep drives

Drive — Axes 1 – 4

optional

- 3020: two 500 Watt servo motor drives
- 3040: four 500 Watt servo motor drives
- 3140: four 20 Watt servo motor drives
- 4040: four 1.4 A stepper motor drives — Full, Half, 1/4, 1/16
- 4140: four microstep drives

Metal enclosure

Required for AMPs and SDMs (optional if not using Galil drives)

Shunt Regulator (optional)

Options

DMC Controller

<table>
<thead>
<tr>
<th>OPT CODE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIN</td>
<td>DIN Rail mounting option</td>
</tr>
<tr>
<td>12 V</td>
<td>12 VDC controller power</td>
</tr>
<tr>
<td>16BIT</td>
<td>16-Bit ADC for analog inputs. 12-bits is standard</td>
</tr>
<tr>
<td>NRExxx</td>
<td>Customized upgrade</td>
</tr>
<tr>
<td>422</td>
<td>RS422 on auxiliary</td>
</tr>
<tr>
<td>SSI</td>
<td>SSI encoders. Quadrature encoders are standard</td>
</tr>
<tr>
<td>BISS</td>
<td>BISS encoders. Quadrature encoders are standard</td>
</tr>
<tr>
<td>TRES</td>
<td>Termination resistors</td>
</tr>
<tr>
<td>4-20mA</td>
<td>4-20mA analog inputs</td>
</tr>
<tr>
<td>HSRC</td>
<td>High power sourcing outputs (default low power sinking)</td>
</tr>
</tbody>
</table>

SDM and AMP Drives

<table>
<thead>
<tr>
<th>OPT CODE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>100mA</td>
<td>100 mA output capacity for AMP-43140. Default is 1 Amp</td>
</tr>
<tr>
<td>ISAMP</td>
<td>Isolation of power between each AMP amplifier</td>
</tr>
<tr>
<td>ISCNTL</td>
<td>Isolation of controller power from amplifier power</td>
</tr>
<tr>
<td>SSR</td>
<td>No current during motor off</td>
</tr>
</tbody>
</table>

Note: If a special option is required, place the appropriate OPT CODE inside a parenthesis directly following the respective DMC, CMB, ICM, SDM or AMP part numbers. Use commas for multiple options within a parenthesis.

Ordering Information continued on the next page.
Ordering Information — continued

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>QUANTITY 1</th>
<th>QUANTITY 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMC-4113</td>
<td>1-axis Ethernet/RS232/USB controller (card-level)</td>
<td>$1095</td>
<td>$ 795</td>
</tr>
<tr>
<td>DMC-4123</td>
<td>2-axis Ethernet/RS232/USB controller (card-level)</td>
<td>$1195</td>
<td>$ 865</td>
</tr>
<tr>
<td>DMC-4133</td>
<td>3-axis Ethernet/RS232/USB controller (card-level)</td>
<td>$1345</td>
<td>$ 925</td>
</tr>
<tr>
<td>DMC-4143</td>
<td>4-axis Ethernet/RS232/USB controller (card-level)</td>
<td>$1495</td>
<td>$ 995</td>
</tr>
<tr>
<td>DMC-4153</td>
<td>5-axis Ethernet/RS232/USB controller (card-level)</td>
<td>$1695</td>
<td>$1145</td>
</tr>
<tr>
<td>DMC-4163</td>
<td>6-axis Ethernet/RS232/USB controller (card-level)</td>
<td>$1795</td>
<td>$1215</td>
</tr>
<tr>
<td>DMC-4173</td>
<td>7-axis Ethernet/RS232/USB controller (card-level)</td>
<td>$1895</td>
<td>$1280</td>
</tr>
<tr>
<td>DMC-4183</td>
<td>8-axis Ethernet/RS232/USB controller (card-level)</td>
<td>$1995</td>
<td>$1345</td>
</tr>
<tr>
<td>-BOX</td>
<td>Metal enclosure for 1–4 axis models</td>
<td>add $ 100</td>
<td>add $ 75</td>
</tr>
<tr>
<td>-BOX</td>
<td>Metal enclosure for 5–8 axis models</td>
<td>add $ 125</td>
<td>add $ 100</td>
</tr>
<tr>
<td>AMP-43040 (-D3040)</td>
<td>Four 500 W servo motor drives (use one for 1–4 axis models; Two for 5–8 axes models). Add to above. - BOX version is required for AMPs and SDMs</td>
<td>$ 700</td>
<td>$ 400</td>
</tr>
<tr>
<td>AMP-43020 (-D3020)</td>
<td>Two 500 Watt servo motor drives. - BOX version is required for AMPs and SDMs</td>
<td>$ 450</td>
<td>$ 275</td>
</tr>
<tr>
<td>AMP-43140 (-D3140)</td>
<td>Four 20 Watt servo motor drives. - BOX version is required for AMPs and SDMs</td>
<td>$ 175</td>
<td>$ 155</td>
</tr>
<tr>
<td>SR-49000 (-SR55)</td>
<td>Shunt regulator (55 V). Add to above</td>
<td>$ 50</td>
<td>$ 35</td>
</tr>
<tr>
<td>SDM-44040 (-D4040)</td>
<td>Four 1.4 A stepper motor drives- Full, Half, 1/4, 1/16. - BOX version is required for AMPs and SDMs</td>
<td>$ 175</td>
<td>$ 155</td>
</tr>
<tr>
<td>SDM-44140 (-D4140)</td>
<td>Four microstep drives. - BOX version is required for AMPs and SDMs</td>
<td>$ 600</td>
<td>$ 400</td>
</tr>
<tr>
<td>PS-2.50-24</td>
<td>24 V, 60-watt power supply</td>
<td>$ 85</td>
<td>$ 60</td>
</tr>
<tr>
<td>PSR-12-24</td>
<td>Power supply, 12 A, 24 VDC. Includes shunt regulator</td>
<td>$ 250</td>
<td>$ 175</td>
</tr>
<tr>
<td>PSR-6-48</td>
<td>Power supply, 6 A, 48 VDC. Includes shunt regulator</td>
<td>$ 250</td>
<td>$ 175</td>
</tr>
<tr>
<td>ICS-48115-F</td>
<td>15-pin D LD female to screw terminals — for analog inputs</td>
<td>$ 50</td>
<td>$ 35</td>
</tr>
<tr>
<td>ICS-48044-M</td>
<td>44-pin D HD male to screw terminals — for general I/O</td>
<td>$ 75</td>
<td>$ 50</td>
</tr>
<tr>
<td>ICS-48026-M</td>
<td>26-pin HD male to screw terminals — for axis connectors</td>
<td>$ 75</td>
<td>$ 50</td>
</tr>
<tr>
<td>GalilTools-Lite</td>
<td>Editor, Terminal, Watch Tools. Includes communication library for developers—supports C++, VB, C#, LabVIEW and more</td>
<td>Free download</td>
<td></td>
</tr>
<tr>
<td>GalilTools</td>
<td>Above with Scope and Tuner</td>
<td>$ 195</td>
<td></td>
</tr>
<tr>
<td>ActiveX Tool Kit</td>
<td>Custom ActiveX controls for Microsoft platforms</td>
<td>$ 595</td>
<td></td>
</tr>
</tbody>
</table>

Galil offers additional quantity discounts for purchases between 1 and 100. Consult Galil for a quotation.
Product Description

Galil’s DMC-21x3 Ethernet motion controllers are designed for extremely cost-sensitive and space-sensitive applications. The DMC-21x3 motor controllers are available with a variety of plug-in multi-axis amplifier boards that are designed to eliminate the wiring and any connectivity issues between the controller and drives.

The controllers incorporate a 32-bit microcomputer and provide such advanced features as PID compensation with velocity and acceleration feedforward, program memory with multitasking for simultaneously running up to eight programs, and uncommitted I/O for synchronizing motion with external events. Modes of motion include point-to-point positioning, position tracking, jogging, linear and circular interpolation, contouring, electronic gearing and ECAM.

Features

- Ethernet 10Base-T port; (1) RS232 port up to 19.2 kbaud
- Ethernet supports multiple masters and slaves. TCP/IP, UDP and Modbus TCP master protocol for communication with I/O devices
- Available in 1 through 8 axis versions
- User-configurable for stepper or servo motors on any combination of axes. Optional firmware for piezo-ceramic motors. Configurable for sinusoidal commutation
- Accepts up to 12 MHz encoder frequencies for servos. Outputs up to 3 MHz for steppers
- PID compensation with velocity and acceleration feedforward, integration limits, notch filter and low-pass filter
- Modes of motion include jogging, point-to-point positioning, contouring, linear and circular interpolation, electronic gearing and electronic cam. Features elliptical scaling, slowdown around corners, infinite segment feed and feedrate override
- Over 200 English-like commands executable by controller. Includes conditional statements and event triggers
- Non-volatile memory for programs, variables and arrays. Concurrent execution of up to eight programs
- Dual encoders, home and limits for each axis
- 8 TTL uncommitted inputs and 8 outputs for 1- to 4-axis, 16 in/16 out for 5- to 8-axis models
- Optically isolated I/O and 500 mA highside outputs available with ICM-20105 (for DMC-21x3)
- Add 8 analog inputs and 40 digital I/O with DB-28040
- High speed position latch for each axis and output compare
- Small size: 1-4 axes card: 4.25” x 7.0”
 5-8 axes card: 4.25” x 10.75”
- DIN-Rail mount option
- Accepts +5 V, ±12 V DC inputs; DC-to-DC converter option for single 9 V to 72 V DC input
- DMC-21x3: 96-pin DIN connectors for each set of 4 axes. DMC-21x2: SCSI connector for each set of 4 axes
- Distributed control option with DMC-31x3 series
- Communication drivers for Windows, Mac OSX, and Linux
- Custom hardware and firmware options available
- CE certified for box-level version
DMC-21x3 Series

Specifications

System Processor
- Motorola 32-bit microcomputer

Communications Interface
- Ethernet 10BASE-T, (1) RS232 port up to 19.2 kbaud
 Commands are sent in ASCII. A binary communication mode is also available as a standard feature

Modes of Motion:
- Point-to-point positioning
- Position Tracking
- Jogging
- 2D Linear and Circular Interpolation with feedrate override
- Linear Interpolation
- Tangential Following
- Helical
- Electronic Gearing with multiple masters
- Gantry Mode
- Electronic Cam
- Contouring
- Teach and playback

Memory
- Program memory size — 1000 lines × 80 characters
- 510 variables
- 8000 array elements in up to 30 arrays

Filter
- PID (proportional-integral-derivative) with velocity and acceleration feedforward
- Notch and low-pass filter
- Velocity smoothing to minimize jerk
- Integration limits
- Torque limits
- Offset adjustments
- Option for piezo-ceramic motors

Kinematic Ranges
- Position: 32 bit (± 2.15 billion counts per move; automatic rollover; no limit in jog or vector modes)
- Velocity: Up to 12 million counts/sec for servo motors
- Acceleration: Up to 67 million counts/sec

Uncommitted Digital I/O
- 8 buffered inputs for 1–4 axes; 16 for 5–8 axes*
- 8 TTL outputs for 1–4 axes; 16 for 5–8 axes*
- 8 ±10 V range analog inputs and 40 digital I/O with DB-28040 (Default I/O is 3.3 V. For 5 V I/O, order DB-28040-5V)
- 8 analog inputs available with AMP-205x0 and SDM-206x0

High Speed Position Latch
- Uncommitted inputs 1–4 latch X, Y, Z, W; 9–12 latch E, F, G, H (latches within 0.1 microseconds)*

Dedicated Inputs (per axis)
- Main encoder inputs — Channel A, A-, B, B-, I, I- (±12 V or TTL)
- Auxiliary encoder inputs for each servo axis
- Forward and reverse limit inputs — buffered*
- Home input — buffered*
- High-speed position latch input — buffered*

Dedicated Outputs (per axis)
- Analog motor command output with 16-bit DAC resolution
- Pulse and direction output for step motors
- Amplifier enable output*
- Error output (one per controller)
- High-speed position compare output (1 output for each set of 4 axes)

Minimum Servo Loop Update Time

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>-FAST†</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–2 axes: 250 µsec</td>
<td>125 µsec</td>
</tr>
<tr>
<td>3–4 axes: 375 µsec</td>
<td>250 µsec</td>
</tr>
<tr>
<td>5–6 axes: 500 µsec</td>
<td>375 µsec</td>
</tr>
<tr>
<td>7–8 axes: 625 µsec</td>
<td>500 µsec</td>
</tr>
</tbody>
</table>

Maximum Encoder Feedback Rate
- 12 MHz

Maximum Stepper Rate
- 3 MHz (Full, half or microstep)

Power Requirements

<table>
<thead>
<tr>
<th>1–4 axes</th>
<th>5–8 axes</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5 V</td>
<td>0.8 A</td>
</tr>
<tr>
<td>-12 V</td>
<td>20 mA</td>
</tr>
<tr>
<td>+12 V</td>
<td>20 mA</td>
</tr>
</tbody>
</table>

DC-to-DC converter option: 9 V to 18 V for -DC12
18 V to 36 V input for -DC24
36 V to 72 V input for -DC48

Approximate current draw for the DMC-2143 with no external load is about 200 mA for 24 V supply

Environmental
- Operating temperature: 0–70º C
- Humidity: 20 – 95% RH, non-condensing

Mechanical
- 1–4 axes card: 4.25” × 7.0”
- 5–8 axes card: 4.25” × 10.75”

*Optically isolated I/O available with ICM-20105 option
†Reduced feature set for -FAST.
Ethernet/RS232 Econo Series, 1–8 axes

DMC-21x3 Series

I/O Expansion Options

DB-28040 I/O Expansion Board

The DB-28040 mounts directly to the DMC-21x3 50-pin header and provides an additional 40 digital inputs and outputs, and eight 12-bit (16-bit optional) analog inputs (default I/O is 3.3 V. For 5 V I/O, order DB-28040-5V). Even with the DB-28040 attached there is still room to mount the ICM-20100, ICM-20105, SDM-20240, AMP-20341 or AMP-20440.

The 40 digital I/O signals are available on a 50-pin IDC header, and the analog inputs are available on a 16-pin header. With a controller firmware modification, the I/O board can also be modified to accept feedback from SSI encoders. 2.55" × 3.08".

DB-28104 Sinusoidal Encoder Interpolation Board

The DB-28104 mounts to the DMC-21x3 50-pin header and provides interpolation of up to four 1-volt differential sinusoidal encoders resulting in a higher position resolution. The AFn command selects sinusoidal interpolation where n specifies 2^n interpolation counts per encoder cycle (n= 5 to 12). For example, if the encoder cycle is 40 microns, AF10 results in 2^{10} = 1024 counts per cycle, or a resolution of 39 nanometers per count. Each sinusoidal encoder connects to the DB-28104 through its own 9-pin D-sub connector. 3.510" × 3.075".

DMC-21x3 Interconnect and Drive Options

ICM-20100 Interconnect Module

The ICM-20100 breaks out the 96-pin connector into convenient D-sub connectors for easy interface to external amplifiers and I/O devices. The ICM-20100 provides 15-pin D-sub connectors for each of the four axes and 25-pin D-sub connectors for the auxiliary encoders and I/O. The ICM may be configured for High or Low amp enable. Default is high Amp Enable (-HAEN). For Low Amp Enable, order -LAEN. The ICM-20100 mounts directly to the 96-pin connector on the DMC-21x3. 4.25" × 3.70".

ICM-20105 Interconnect with Optically Isolated I/O

The ICM-20105 provides optical isolation for DMC-21x3 inputs and outputs, and breaks out the 96-pin connector into convenient D-sub connectors for easy interface to external amplifiers and I/O devices. The ICM-20105 provides four 15-pin D-sub connectors for each of the four axes, a 37-pin D-sub for the digital I/O, home and limits, and a 25-pin D-sub for the auxiliary encoders and I/O. The ICM-20105 is user-configurable for a broad range of amplifier enable options including: High amp enable, Low amp enable, 5 V logic, 12 V logic, external voltage supplies up to 24 V and sinking or sourcing. The ICM-20105 mounts directly to the 96-pin connector on the DMC-21x3. 4.25" × 3.70".

ICM-20501 Interconnect Module for AMP-205x0

The ICM-20501 provides optical isolation on digital inputs and outputs to interface with up to 24V I/O. The first four outputs are high power outputs capable of providing up to 500 mA at up to 24 VDC. The ICM-20501 is available with D-type connectors. This provides optical isolation of the I/O when using an AMP-205x0. The D-type connectors include four 15-pin HD connectors and one 44-pin HD connector. The pinout of the 15-pin connectors are the same as the AMP-205x0. The 44-pin connections are the same except for the following four signals: Pin 9 Output Supply Pin 25 Input Common Pin 39 Output Return Pin 40 Limit Switch Common

AMP-20341 4-axis 20 W Servo Drives

The AMP-20341 contains four linear drives for operating small brush-type servo motors. The AMP-20341 requires a ± 12 – 30 VDC input.* Output power is 20 W per amplifier or 60 W total. The gain of each transconductance linear amplifier is 0.1 A/V at 1 A maximum current. The typical current loop bandwidth is 4 kHz. The AMP-20341 uses 15-pin D-sub connectors for encoder and limit connections on each axis and a 25-pin D-sub connector for I/O connections. An SSR option is available which guarantees absolutely no current during motor off. 4.25" × 3.70".

*The default configuration of the AMP-20341 is with J98 removed, which allows operation from a separate dual supply. Specify “install J98” for operation of the AMP-20341 and DMC-21x3 from the same dual supply.

AMP-204x0 2- and 4-axis 200 W Servo Drives

The AMP-20440 contains four transconductance, PWM amplifiers for driving brush-type servo motors up to 200 Watts. Each amplifier drives up to 3.3 Amps at 20–60 VDC (available voltage at the motor is 10% less). No external heat sink is required. The AMP-20440 uses 2-pin Molex connectors for each motor and a 15-pin high density D-sub connector for encoder, limits and home for each axis. A single 44-pin high density D-sub connector is used for additional I/O signals. A 4-pin Molex is used for the DC voltage input from a single DC power supply ranging from 20–60 Volts. A two axis version, the AMP-20420 is also available. 4.95" × 3.75".
Ethernet/RS232 Econo Series, 1–8 axes

DMC-21x3 Series

DMC-21x3 Interconnect and Drive Options — continued

AMP-205x0 2- and 4-axis 500 W Servo Drives

The AMP-205x0 contains four transconductance, PWM amplifiers for driving brushless or brush-type servo motors. Each amplifier drives motors operating at up to 7 Amps continuous, 10 Amps peak, 18 – 60 VDC (available voltage at the motor is 10% less). The gain settings of the amplifier are user-programmable at 0.4 Amp/Volt, 0.7 Amp/Volt and 1 Amp/Volt. The switching frequency is 60 kHz. The amplifier offers protection for over-voltage, under-voltage, over-current, short-circuit and over-temperature. The amplifier status can be read through the DMC-21x3 controller, and the BS command allows easy hall sensor set-up. A 2-axis amplifier board, the AMP-20520 is also available. In a standard configuration the DB-28040 I/O board will not install next to an AMP-20540, however the AMP-20540 provides 8 uncommitted analog inputs with 12-bit ADC (16-bit optional).* The SR-19900 shunt regulator is available for the AMP-20540. 6.92” × 4.85”. CE certified

*Please consult factory for special options available when using a DB-28040 with an AMP-20540.

SDM-20242 4-axis Full/Half Stepper Drives

The SDM-20242 contains four drives for operating two-phase bipolar step motors. The SDM-20242 requires a single 12 – 30 VDC input. The SDM is user-configurable for 1.4 A, 1.0 A, 0.75 A, or 0.5 A per phase and full, half, 1/4 or 1/16 step. Adequate airflow across the board is recommended. The SDM uses 9-pin D-sub connectors for encoder and limit connections on each axis and a 25-pin D-sub connector for I/O connections. 4.25” × 3.70”.

Note Regarding Power for AMP and SDM Amplifiers:

The default configuration of the AMP-205xx, AMP-204x0, SDM-20242 and SDM-206x0 amplifiers is to pass their operating voltages to the -DC24 or -DC48 controller supply. If you would like to operate these amplifiers from a separate supply, specify “no J98” on your DMC-21x3 controller and amplifier order. The default configuration of the AMP-20341 is with J98 removed which allows operation from a separate supply. Specify “install J98” for operation of the AMP-20341 and DMC-21x3 from the same dual supply.

SDM-206x0 2- and 4-axis Microstep Drives

The SDM-20640 contains four microstepping drives for operating two-phase bipolar stepper motors. The drives produce 64 microsteps per full step or 256 steps per full cycle which results in 12,800 steps/rev for a standard 200-step motor. The maximum step rate generated by the controller is 3,000,000 microsteps/second. Correct motor sizing calculations are critical to achieve stepper performance at speed. Please contact Galil for assistance. The SDM-20640 drives motors operating at up to 3 Amps at 12 VDC to 60 VDC (available voltage at the motor is 10% less). There are four software-selectable current settings: 0.5 A, 1 A, 2 A and 3 A. A selectable low-current mode reduces the current by 75% when the motor is not in motion. No external heatsink is required. A two-axis model, the SDM-20620 is also available. Includes 8 uncommitted analog inputs.

5- Through 8-axis Configurations

For the first four axes, any ICM, AMP or SDM may be used. Due to size constraints, for axes 5 through 8 only the ICM-20100, ICM-20105, AMP-20341, AMP-204x0 or SDM-20242 can be used.

Power Supplies — PSR Series

The PSR Series are regulated DC power supplies capable of operating from 100/240 VAC input, 50/60 Hz. The power supply includes power factor correction, a shunt regulator and blocking diode.

<table>
<thead>
<tr>
<th>Model</th>
<th>Power Rating</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSR-12-24</td>
<td>24 VDC @ 12 A cont.</td>
<td>9” × 6.5” × 2” 3.5 lbs.</td>
</tr>
<tr>
<td>PSR-6-48</td>
<td>48 VDC @ 6 A cont.</td>
<td>9” × 6.5” × 2” 3.5 lbs.</td>
</tr>
</tbody>
</table>
Ordering Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>QUANTITY 1</th>
<th>QUANTITY 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMC-2113 (or -2112)</td>
<td>1-axis Ethernet 10BASE-T , RS232 card, 96-pin DIN (or 100-pin SCSI)</td>
<td>$ 795</td>
<td>$ 595</td>
</tr>
<tr>
<td>DMC-2123 (or -2122)</td>
<td>2-axis Ethernet 10BASE-T , RS232 card, 96-pin DIN (or 100-pin SCSI)</td>
<td>$ 895</td>
<td>$ 665</td>
</tr>
<tr>
<td>DMC-2133 (or -2132)</td>
<td>3-axis Ethernet 10BASE-T , RS232 card, 96-pin DIN (or 100-pin SCSI)</td>
<td>$1045</td>
<td>$ 725</td>
</tr>
<tr>
<td>DMC-2143 (or -2142)</td>
<td>4-axis Ethernet 10BASE-T , RS232 card, 96-pin DIN (or 100-pin SCSI)</td>
<td>$1195</td>
<td>$ 795</td>
</tr>
<tr>
<td>DMC-2153 (or -2152)</td>
<td>5-axis Ethernet 10BASE-T , RS232 card, 96-pin DIN (or 100-pin SCSI)</td>
<td>$1295</td>
<td>$ 845</td>
</tr>
<tr>
<td>DMC-2163 (or -2162)</td>
<td>6-axis Ethernet 10BASE-T , RS232 card, 96-pin DIN (or 100-pin SCSI)</td>
<td>$1395</td>
<td>$ 895</td>
</tr>
<tr>
<td>DMC-2173 (or -2172)</td>
<td>7-axis Ethernet 10BASE-T , RS232 card, 96-pin DIN (or 100-pin SCSI)</td>
<td>$1495</td>
<td>$ 945</td>
</tr>
<tr>
<td>DMC-2183 (or -2182)</td>
<td>8-axis Ethernet 10BASE-T , RS232 card, 96-pin DIN (or 100-pin SCSI)</td>
<td>$1595</td>
<td>$ 995</td>
</tr>
<tr>
<td>DMC-31x3</td>
<td>DMC-21x3 with distributed control functionality</td>
<td>Same price as DMC-21x3</td>
<td></td>
</tr>
<tr>
<td>-DIN</td>
<td>DIN-rail mount option for DMC-21x2/x3</td>
<td>$ 100</td>
<td>$ 50</td>
</tr>
<tr>
<td>-BOX</td>
<td>Metal enclosure for DMC-2143 and ICM-20105</td>
<td>$ 100</td>
<td>$ 75</td>
</tr>
<tr>
<td>-DC12, -DC24, -DC48</td>
<td>DC-to-DC converter for 9 V to 18 V, 18 V to 36 V, or 36 V to -72 V</td>
<td>$ 100</td>
<td>$ 70</td>
</tr>
<tr>
<td>DB-28040</td>
<td>I/O expansion board for 8 analog inputs and 40 digital I/O (outputs sink/source 3.3 V)</td>
<td>$ 295</td>
<td>$ 195</td>
</tr>
<tr>
<td>DB-28040-5V</td>
<td>I/O expansion board for 40 digital I/O and 8 analog inputs. Outputs sink/source 5 V</td>
<td>$ 295</td>
<td>$ 195</td>
</tr>
<tr>
<td>DB-28104</td>
<td>Sinusoidal Encoder Interpolation Board</td>
<td>$ 395</td>
<td>$ 245</td>
</tr>
<tr>
<td>ICM-20100</td>
<td>DMC-21x3 Interconnect with D-type connectors (use 1 for every 4 axes)</td>
<td>$ 95</td>
<td>$ 75</td>
</tr>
<tr>
<td>ICM-20105</td>
<td>DMC-21x3 Interconnect for optically isolated I/O (use 1 for every 4 axes)</td>
<td>$ 195</td>
<td>$ 145</td>
</tr>
<tr>
<td>ICM-20501</td>
<td>AMP-205x0 Interconnect with optical isolation and D-Type</td>
<td>$ 345</td>
<td>$ 245</td>
</tr>
<tr>
<td>SDM-20242</td>
<td>DMC-21x3 Interconnect with four 1.4 A stepper drivers</td>
<td>$ 195</td>
<td>$ 175</td>
</tr>
<tr>
<td>SDM-20620</td>
<td>DMC-21x3 Interconnect with two microstepping drives (includes 8 analog inputs)</td>
<td>$ 545</td>
<td>$ 345</td>
</tr>
<tr>
<td>SDM-20640</td>
<td>DMC-21x3 Interconnect with four microstepping drives (includes 8 analog inputs)</td>
<td>$ 695</td>
<td>$ 395</td>
</tr>
<tr>
<td>AMP-20341</td>
<td>DMC-21x3 Interconnect with four 20 W servo drives (default J98 removed)</td>
<td>$ 195</td>
<td>$ 175</td>
</tr>
<tr>
<td>AMP-20420</td>
<td>DMC-21x3 Interconnect with two 200 W servo drives</td>
<td>$ 395</td>
<td>$ 245</td>
</tr>
<tr>
<td>AMP-20440</td>
<td>DMC-21x3 Interconnect with four 200 W servo drives</td>
<td>$ 595</td>
<td>$ 295</td>
</tr>
<tr>
<td>AMP-20520</td>
<td>DMC-21x3 Interconnect with two 500 W servo drives (includes 8 analog inputs)</td>
<td>$ 595</td>
<td>$ 395</td>
</tr>
<tr>
<td>AMP-20540</td>
<td>DMC-21x3 Interconnect with four 500 W servo drives (includes 8 analog inputs)</td>
<td>$ 795</td>
<td>$ 495</td>
</tr>
<tr>
<td>AMP-20542</td>
<td>DMC-21x3 interconnect with four servo drives for low-inductance motors</td>
<td>$ 695</td>
<td>$ 395</td>
</tr>
<tr>
<td>AMP-205x0-80</td>
<td>Option for 80 V input (default J98 removed)</td>
<td>No extra charge</td>
<td></td>
</tr>
<tr>
<td>-16BIT ADC</td>
<td>16-bit ADC for analog inputs</td>
<td>$ 100 adder</td>
<td></td>
</tr>
<tr>
<td>SR-19900</td>
<td>Shunt regulator for AMP-205x0</td>
<td>$ 75</td>
<td>$ 40</td>
</tr>
<tr>
<td>PSR-12-24</td>
<td>Power supply, 12 A, 24 VDC. Includes shunt regulator</td>
<td>$ 250</td>
<td>$ 175</td>
</tr>
<tr>
<td>PSR-6-48</td>
<td>Power supply, 6 A, 48 VDC. Includes shunt regulator</td>
<td>$ 250</td>
<td>$ 175</td>
</tr>
<tr>
<td>ICS-48015-M</td>
<td>15-pin D HD male to screw terminals. For encoders</td>
<td>$ 50</td>
<td>$ 35</td>
</tr>
<tr>
<td>ICS-48015-F</td>
<td>15-pin D LD female to screw terminals. For analog</td>
<td>$ 50</td>
<td>$ 35</td>
</tr>
<tr>
<td>ICS-48044-M</td>
<td>44-pin D HD male to screw terminals. For I/O</td>
<td>$ 75</td>
<td>$ 50</td>
</tr>
<tr>
<td>ICS-48044-F</td>
<td>44-pin D HD female to screw terminals. For drives</td>
<td>$ 75</td>
<td>$ 50</td>
</tr>
<tr>
<td>CABLE-15-1M</td>
<td>15-pin HD D sub to discrete wires—1 meter (for AMP-205x0, -204x0)</td>
<td>$ 25</td>
<td>$ 17</td>
</tr>
<tr>
<td>CABLE-15-2M</td>
<td>15-pin HD D sub to discrete wires—2 meter (for AMP-205x0, -204x0)</td>
<td>$ 30</td>
<td>$ 20</td>
</tr>
<tr>
<td>CABLE-44-1M</td>
<td>44-pin HD D sub to discrete wires—1 meter (for AMP-205x0, -204x0)</td>
<td>$ 35</td>
<td>$ 24</td>
</tr>
<tr>
<td>CABLE-44-2M</td>
<td>44-pin HD D sub to discrete wires—2 meter (for AMP-205x0, -204x0)</td>
<td>$ 40</td>
<td>$ 27</td>
</tr>
</tbody>
</table>

Galil offers additional quantity discounts for purchases between 1 and 100. Consult Galil for a quotation.
Product Description

The DMC-18x2 Series are PCI bus motion controllers for single and multi-axis applications. The Econo Series is designed for the most cost-sensitive applications.

To minimize cost, the following features are not available on the DMC-18x2: five through eight axes of control, optical isolation on inputs, uncommitted analog inputs, dual encoder inputs, and the auxiliary FIFO and DPRAM communication channel.

The DMC-18x2 incorporates a 32-bit microcomputer and provides advanced features such as PID compensation with velocity and acceleration feedforward, memory with multitasking for simultaneously running up to eight programs, and uncommitted I/O for synchronizing motion with external events. Modes of motion include point-to-point positioning, jogging, linear and circular interpolation, contouring, electronic gearing, and electronic cam.

Like all Galil controllers, the DMC-18x2 motor controllers use a simple, intuitive command language which makes them very easy to program. GalilTools software further simplifies system set-up with “one-button” servo tuning and real-time display of position and velocity information.

Features

- PCI card in 1- through 4-axis versions:
 DMC-18x2 where x=1,2,3,4 axes
- User-configurable for stepper or servo motors on any combination of axes. Optional firmware for piezo-ceramic motors. Configurable for sinusoidal commutation
- Accepts up to 12 MHz encoder frequencies for servos. Outputs up to 3 MHz for stepper motors
- PID compensation with velocity and acceleration feedforward, integration limits, notch filter and low-pass filter
- Modes of motion include jogging, point-to-point positioning, contouring, linear and circular interpolation, electronic gearing and ECAM. Features elliptical scaling, slow-down around corners, infinite segment feed, and feedrate override
- Over 200 English-like commands including conditional statements and event triggers
- Non-volatile memory for programs, variables, and arrays. Multitasking for concurrent execution of up to eight programs
- Home input and forward and reverse limits accepted for every axis
- 8 uncommitted inputs and 8 outputs
- High speed position latch for each axis and output compare
- Expansion for 64 I/O with optional DB-14064 board
- 100-pin SCSI connector. ICM-2900 breaks-out 100-pin cable into screw terminals
- AMP-19540 connects to PCI controller with 100-pin cable and provides four amplifiers for 500 W servos
- Communication drivers for Windows, Mac OSX, and Linux
- CE certified
- Custom hardware and firmware options available
PCI Bus Econo Series, 1–4 axes

DMC-18x2 Series

Specifications

System Processor
- Motorola 32-bit microcomputer

Communications Interface
- DMC-18x2: PCI with bi-directional FIFO
- 32-bit PCI interface. 64-bit compatible. 5 V/3.3 V
Commands are sent in ASCII. A binary communication mode is also available as a standard feature

Modes of Motion:
- Point-to-point positioning
- Position Tracking
- Jogging
- 2D Linear and Circular Interpolation with feedrate override
- Linear Interpolation for up to 4 axes
- Tangential Following
- Helical
- Electronic Gearing with multiple masters and ramp-to-gearing
- Gantry Mode
- Electronic Cam
- Contouring
- Teach and playback

Memory
- Program memory size — 1000 lines × 80 characters
- 254 variables
- 8000 array elements in up to 30 arrays

Filter
- PID (proportional-integral-derivative) with velocity and acceleration feedforward
- Notch filter and low-pass filter
- Velocity smoothing to minimize jerk
- Integration limits
- Torque limits
- Offset adjustments
- Option for piezo-ceramic motors

Kinematic Ranges
- Position: 32 bit (± 2.15 billion counts per move; automatic rollover; no limit in jog or vector modes)
- Velocity: Up to 12 million counts/sec for servo motors
- Acceleration: Up to 67 million counts/sec²

Uncommitted Digital I/O

<table>
<thead>
<tr>
<th>DMC-18x2</th>
<th>DIGITAL INPUTS</th>
<th>DIGITAL OUTPUTS</th>
<th>ANALOG INPUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>8 V</td>
<td>0</td>
</tr>
</tbody>
</table>

High Speed Position Latch
- Uncommitted inputs 1–4 latch X,Y,Z,W (latches within 0.1 microseconds)

Dedicated Inputs (per axis)
- Main encoder inputs — Channel A, A-, B,B-,I, I- (±12 V or TTL)
- Forward and reverse limit inputs
- Home input
- Selectable high-speed position latch input
- Selectable abort input for each axis

Dedicated Outputs (per axis)
- Analog motor command output with 16-bit DAC resolution
- Pulse and direction output for step motors
- PWM output also available for servo amplifiers
- Amplifier enable output
- Error output (per card)
- High-speed position compare output (per card)

Minimum Servo Loop Update Time

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>-FAST†</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–2 axes: 250 µsec</td>
<td>125 µsec</td>
</tr>
<tr>
<td>3–4 axes: 375 µsec</td>
<td>250 µsec</td>
</tr>
</tbody>
</table>

Maximum Encoder Feedback Rate
- 12 MHz

Maximum Stepper Rate
- 3 MHz (Full, half or microstep)

Power Requirements

<table>
<thead>
<tr>
<th>DMC-18x2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5V 750 mA</td>
</tr>
<tr>
<td>-12V 20 mA</td>
</tr>
<tr>
<td>+12V 20 mA</td>
</tr>
<tr>
<td>+3.3V 100 mA*</td>
</tr>
</tbody>
</table>

Environmental
- Operating temperature: 0 –70º C
- Humidity: 20 –95% RH, non-condensing

Mechanical
- DMC-18x2: 7.275" × 4.2"

Connectors
- 100-pin HD SCSI

* DMC-18x2 revision E and higher require 3.3V from PCI bus. Order DMC-18x2-3VREG to have a regulator installed to allow 5V only supply.
† Reduced feature set for -FAST.
PCI Bus Econo Series, 1–4 axes

DMC-18x2 Series

Hardware Accessories

ICM-2900 Interconnect Module
The ICM-2900 breaks out the 100-pin SCSI cable into screw-type terminals. The ICM-2900-FL has flanges which allow standard screw-type mounting. Specify -OPTO for optoisolated outputs. Specify -HAEN for high amp enable and -LAEN for low amp enable.

AMP-19540 Interconnect with Four 500 Watt Servo Drives
Galil's AMP-19540 is a 4-axis amplifier for driving brush or brushless motors up to 500 Watts each. By interfacing directly to Galil's DMC-18x2 PCI bus controllers, it provides a cost-effective controller/drive solution for multi-axis applications. The AMP-19540 contains four transconductance, PWM amplifiers for driving brush or brushless motors. Each amplifier operates at 18 V to 80 V DC, up to 7 Amps continuous, 10 Amps peak. The AMP-19540 gain setting is easily configured with jumpers. The PWM switching frequency is 60 kHz. The AMP-19540 enclosure has dimensions of 6.8" \times 8.75" \times 1". It interfaces to a PCI bus controller with a single, 100-pin high density SCSI cable. Signals for each axis are brought out through D-type connectors located on the AMP-19540. For applications with less than three axes, the AMP-19520 two-axis model is available. A shunt regulator option is also available. CE certified.

DB-14064 I/O Expansion
The DB-14064 is an optional board which provides 64 additional I/O for the DMC-18x2 controllers. This board mounts directly onto the back of the controller and provides 64 I/O points configurable by the user for inputs or outputs. The I/O is accessible through two 50-pin headers.

Ordering Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>QUANTITY 1</th>
<th>QUANTITY 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMC-1812</td>
<td>1-axis Econo PCI motor controller</td>
<td>$795</td>
<td>$595</td>
</tr>
<tr>
<td>DMC-1822</td>
<td>2-axis Econo PCI motor controller</td>
<td>$895</td>
<td>$665</td>
</tr>
<tr>
<td>DMC-1832</td>
<td>3-axis Econo PCI motor controller</td>
<td>$1045</td>
<td>$725</td>
</tr>
<tr>
<td>DMC-1842</td>
<td>4-axis Econo PCI motor controller</td>
<td>$1195</td>
<td>$795</td>
</tr>
<tr>
<td>-3VREG</td>
<td>Option for 3 Volt regulator which allows for 5V only supply from PCI bus</td>
<td>No extra charge</td>
<td></td>
</tr>
<tr>
<td>CABLE-100-1M</td>
<td>100-pin HD cable in 1 meter length</td>
<td>$165</td>
<td>$125</td>
</tr>
<tr>
<td>CABLE-100-2M</td>
<td>100-pin HD cable in 2-meter length</td>
<td>$180</td>
<td>$135</td>
</tr>
<tr>
<td>CABLE-100-4M</td>
<td>100-pin HD cable in 4 meter length</td>
<td>$195</td>
<td>$145</td>
</tr>
<tr>
<td>ICM-2900-FL</td>
<td>Interconnect module (use 1 for every 4 axes). Specify -HAEN for high amp enable or -LAEN for low amp enable. Specify -FL for flange</td>
<td>$295</td>
<td>$195</td>
</tr>
<tr>
<td>ICM-2900-OPTO</td>
<td>ICM with optoisolated outputs</td>
<td>$345</td>
<td>$245</td>
</tr>
<tr>
<td>AMP-19520</td>
<td>2-axis amplifier for 500 W servo motors</td>
<td>$595</td>
<td>$395</td>
</tr>
<tr>
<td>AMP-19540</td>
<td>4-axis amplifier for 500 W servo motors</td>
<td>$795</td>
<td>$495</td>
</tr>
<tr>
<td>-SR</td>
<td>Shunt regulator option for AMP-195x0</td>
<td>$50</td>
<td>$25</td>
</tr>
<tr>
<td>DB-14064</td>
<td>Attachment board for 64 additional I/O, DMC-18x2</td>
<td>$295</td>
<td>$195</td>
</tr>
<tr>
<td>GalilTools-Lite</td>
<td>Editor, Terminal, Watch Tools. Includes communication library for developers-supports C++, VB, C#, LabVIEW and more</td>
<td>Free download</td>
<td></td>
</tr>
<tr>
<td>GalilTools</td>
<td>Above with Scope and Tuner</td>
<td>$195</td>
<td></td>
</tr>
<tr>
<td>ActiveX Tool Kit</td>
<td>Custom ActiveX controls for Microsoft platforms</td>
<td>$595</td>
<td></td>
</tr>
</tbody>
</table>

Galil offers additional quantity discounts for purchases between 1 and 100. Consult Galil for a quotation.
Galil's single axis motion controllers are specially designed to provide a cost-effective and compact solution for single axis or 1 1/2 axis motor control applications. The DMC-1415 provides precise, one axis control of a stepper or servo motor and includes an auxiliary encoder for dual loop or electronic gearing applications. The DMC-1425 provides two axes of control and includes a linear/circular mode of motion (an auxiliary encoder input is not provided). The CDS-3310 is a single axis controller packaged with a 500 W servo drive as a single, compact unit.

- Ethernet/RS232 port
- Precise motion control
- Program memory, variables and arrays
- Uncommitted I/O

Single-Axis Series

Smart Solutions for 1-axis Applications.

<table>
<thead>
<tr>
<th></th>
<th>DMC-1415</th>
<th>DMC-1425</th>
<th>CDS-3310</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications</td>
<td>Ethernet 10Base-T RS232 19.2 kb</td>
<td>Ethernet 10Base-T RS232 19.2 kb</td>
<td>Ethernet 10/100Base-T RS232 19.2 kb</td>
</tr>
<tr>
<td># of Axis</td>
<td>1 1/2</td>
<td>2 servo or 2 stepper</td>
<td>1 1/2</td>
</tr>
<tr>
<td>Form-factor</td>
<td>Card 3.75" × 5.0"</td>
<td>Card 3.75" × 5.0"</td>
<td>Box 5.15" × 8.25"</td>
</tr>
<tr>
<td># digital inputs</td>
<td>7</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td># digital outputs</td>
<td>3</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td># analog I/O</td>
<td>2 in</td>
<td>2 in</td>
<td>2 in, 1 out</td>
</tr>
<tr>
<td>Auxiliary encoder</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Connector</td>
<td>37-pin D; mating ICM-1460 provides screw terminals</td>
<td>37-pin D; mating ICM-1460 provides screw terminals</td>
<td>37-pin D; mating ICM-3300 provides screw terminals</td>
</tr>
<tr>
<td>Galil Drive Options</td>
<td>AMP-14110 1-axis 20 W servo drive</td>
<td>AMP-14120 2-axis 20 W servo drive</td>
<td>Internal 500 W servo drive for brush/brushless motors</td>
</tr>
</tbody>
</table>
Product Description

The DMC-1415 and DMC-1425 are economical, one and two axis motion controllers with an Ethernet 10Base-T and RS232 port. The DMC-34x5 is designed for Ethernet-based distributed systems where one DMC-34x5 controller is designated as the master over other DMC-34x5 controllers. Controllers are available as a card-level product or in a metal enclosure with power supply.

With a 32-bit microcomputer, the single and dual axis controllers provide such advanced features as PID compensation with velocity and acceleration feedforward, program memory with multitasking for simultaneously running two applications programs, and uncommitted I/O for synchronizing motion with external events. It handles various modes of motion including point-to-point positioning, jogging, contouring, electronic gearing and electronic cam. The DMC-1415 or -3415 single-axis motor controller accepts inputs from two encoders, which is useful for electronic gearing applications. The DMC-1425 or -3425 dual-axis controller includes linear and circular interpolation for precise, coordinated motion.

Like all Galil motor controllers, the DMC-14x5 and -34x5 controllers use a simple, English-like command language which makes them very easy to program. Galil’s WSDK servo design software further simplifies system set-up with “one-button” servo tuning and real-time display of position and velocity information. Communication drivers are available for Windows, .NET, Mac OSX, and Linux.

Features

- Card-level and box-level, stand-alone motion controllers
- DMC-1415 or DMC-3415: 1-axis card or box
- DMC-1425 or DMC-3425: 2-axis card or box
- Ethernet 10BASE-T and one RS232 port up to 19.2 kb.
- Ethernet supports multiple masters and slaves
- The DMC-1425, -3425 controls two servos or two steppers
- Accepts up to 12 MHz encoder frequencies for servos.
- Outputs up to 3 MHz for steppers
- Advanced PID compensation with velocity and acceleration feedforward, offsets, notch filter and integration limits
- Modes of motion include jogging, point-to-point positioning, contouring, electronic gearing and electronic cam. Accepts input from auxiliary encoder for DMC-1415, -3415 only. Linear and circular interpolation for DMC-1425, -3425 only.
- Over 200 English-like commands directly executable by controller. Includes conditional statements and event triggers
- Non-volatile memory for programs, variables and arrays. Concurrent execution of two application programs
- Home input and forward and reverse limits
- 2 uncommitted analog inputs with 12-bit ADC
- DMC-1415, -3415: 7 Uncommitted digital inputs, 3 digital outputs
- DMC-1425, -3425: 3 Uncommitted digital inputs, 3 digital outputs
- High-speed position latch
- Use Galil’s RIO Pocket PLC, IOC-7007 or DB-14064 for additional I/O
- Uses 37-pin D connector. ICM-1460 interconnect module breaks-out 37-pin cable into screw terminals
- DMC-14x5, -34x5-Card accepts +5 V, ± 12 V;
 DMC-14x5, -34x5-BOX accepts 90 – 260 VAC
- Compact size:
 DMC-14x5, -34x5-CARD: 3.75” x 5.0”
 DMC-14x5, -34x5-BOX: 5.1” x 3.0” x 6.8”
- Communication drivers for Windows, Mac OSX, and Linux
- CE certified
- Custom hardware and firmware options available
Specifications

System Processor
- Motorola 32-bit microcomputer

Communications Interface
- Ethernet BASE-T and RS232 port up to 19.2 k baud

Modes of Motion:
- Point-to-point positioning
- Jogging
- Electronic Gearing
- Electronic Cam
- Contouring
- Linear and circular interpolation for DMC-1425, -3425

Memory
- Program memory size—500 lines x 80 characters
- 126 variables
- 2000 array elements in up to 14 arrays

Filter
- PID (proportional-integral-derivative) with velocity and acceleration feedforward
- Notch filter
- Dual-loop control for backlash compensation (DMC-1415, -3415 only)
- Velocity smoothing to minimize jerk
- Integration limits
- Torque limits
- Offset adjustment
- Option for piezo-ceramic motors

Kinematic Ranges
- Position: 32 bit (± 2.15 billion counts per move; automatic rollover; no limit in jog or vector modes)
- Velocity: Up to 12 million counts/sec for servo motors
- Acceleration: Up to 67 million counts/sec²

Uncommitted Digital I/O
- DMC-1415/3415: 7 buffered inputs; 3 TTL outputs*
- DMC-1425, -3425: 3 buffered inputs; 3 TTL outputs*
- DB-14064: Configurable 64 TTL I/O

Uncommitted Analog Inputs
- 2 individual ±10 V analog inputs with 12-bit resolution (16-bit optional)

High Speed Position Latch
- Latches within 0.1 microseconds

Dedicated I/O
- Main encoder inputs—Channel A, A-, B, B-, J, J- (±12 V or TTL)
- Auxiliary encoder—Channel A, A-, B, B- (not available on DMC-1425, -3425)
- Forward and reverse limit inputs—buffered*
- Home input—buffered*
- High-speed position latch input—buffered*
- Analog motor command output with 16-bit DAC resolution
- Pulse and direction output for step motors
- Amplifier enable output
- Error output
- Encoder output compare

Minimum Servo Loop Update Time
- 250 microseconds
- 125 microseconds with fast firmware (DMC-14x5)

Maximum Encoder Feedback Rate
- 12 MHz

Maximum Stepper Rate
- 3 MHz (Full, half or microstep)

Power Requirements
- DMC-1415 and DMC-1425 cards:
 +5 V 400 mA
 -12 V 40 mA
 +12 V 40 mA
- DMC-1415/1425/34x5 Box: accepts 90–260 V AC 50/60 Hz supply

Environmental
- Operating temperature: 0–70º C for card; 0–60º C for box
- Humidity: 20–95% RH, non-condensing

Mechanical
- DMC-14x5, -34x5 cards: 3.75" x 5.0"
- DMC-14x5, -34x5 boxes: 5.1" x 6.8" x 3.0"

Connectors
- 37-pin D-type

*Optically isolated I/O available with ICM-1460-OPTO option.
Hardware Accessories

ICM-1460
The ICM-1460 Interconnect Module provides a breakout to screw terminals for the 37-pin D-type cable from the DMC-14x5 or 34x5 for quick connection of system hardware. The ICM-1460 is contained in a metal enclosure with dimensions of 6.9” × 4.9” × 2.6” and 0.2” diameter keyholes for mounting. The ICM is normally shipped configured for high amp enable, +5 V (-HAEN). For low amp enable, order ICM-1460-LAEN.

ICM-1460 OPTO
For applications requiring optoisolation, the ICM-1460 “OPTO” option provides 5 – 24 V optoisolation on all general inputs and outputs, home inputs, limits, and abort input.

DB-14064 I/O Expansion
The DB-14064 is an optional board which provides 64 additional I/O for the DMC-14x5 or 34x5 controller cards. This board mounts directly onto the back of the controller and provides 64 I/O points configurable by the user for inputs or outputs. The I/O is accessible through two 50-pin headers.

AMP-14110 1-axis and AMP-14120 2-axis 20W Servo Drives
The AMP-14110 and AMP-14120 are one-axis and two-axis linear drives for operating small brush-type servo motors. The AMP-14110 mounts directly to the DMC-1415 1-axis controller and the AMP-14120 mounts to the DMC-1425 2-axis controller. The amplifiers require a ±12 – 30 VDC input. Output power is 20W per amplifier. The gain of each transconductance linear amplifier is 0.1 A/V at 1 A maximum current. The typical current loop bandwidth is 4 kHz. 100 mA maximum current is available as an option.

Ordering Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>QUANTITY 1</th>
<th>QUANTITY 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMC-1415-card</td>
<td>1-axis stand-alone controller with Ethernet & RS232</td>
<td>$ 595</td>
<td>$ 395</td>
</tr>
<tr>
<td>DMC-1415-box</td>
<td>DMC-1415 in enclosure with power supply</td>
<td>$ 795</td>
<td>$ 545</td>
</tr>
<tr>
<td>DMC-1425-card</td>
<td>2-axis controller for 2 servo motors</td>
<td>$ 695</td>
<td>$ 445</td>
</tr>
<tr>
<td>DMC-1425-box</td>
<td>DMC-1425 in enclosure with power supply</td>
<td>$ 895</td>
<td>$ 595</td>
</tr>
<tr>
<td>-STEPPER option</td>
<td>Controls 2 step motors instead of 2 servo motors</td>
<td>No extra charge</td>
<td></td>
</tr>
<tr>
<td>CABLE 37-pin D</td>
<td>37-pin D-type cable</td>
<td>$ 25</td>
<td></td>
</tr>
<tr>
<td>ICM-1460</td>
<td>Interconnect Module. Specify -HAEN for high amp enable or -LAEN for low amp enable</td>
<td>$ 145</td>
<td>$ 95</td>
</tr>
<tr>
<td>ICM-1460-STEPPER</td>
<td>Interconnect for DMC-1425-STEPPER</td>
<td>$ 145</td>
<td>$ 95</td>
</tr>
<tr>
<td>ICM-1460-OPTO</td>
<td>ICM with optoisolated inputs and outputs</td>
<td>$ 195</td>
<td>$ 145</td>
</tr>
<tr>
<td>AMP-14110</td>
<td>1-axis 20W servo amplifier board for DMC-1415-card</td>
<td>$ 75</td>
<td>$ 55</td>
</tr>
<tr>
<td>AMP-14120</td>
<td>2-axis 20W servo amplifier board for DMC-1425-card</td>
<td>$ 125</td>
<td>$ 105</td>
</tr>
<tr>
<td>DB-14064</td>
<td>Expansion board for 64 I/O (for card-level only)</td>
<td>$ 295</td>
<td>$ 195</td>
</tr>
<tr>
<td>Galil Utilities</td>
<td>Communication drivers, SmartTERM, DMCDOS</td>
<td>$ 20 for CD; free download</td>
<td></td>
</tr>
<tr>
<td>DMCWIN32</td>
<td>Windows API Tool Kit (VB, C, C++, etc.)</td>
<td>Included with Utilities</td>
<td></td>
</tr>
<tr>
<td>WSDK</td>
<td>Set-up, tuning and analysis software</td>
<td>$ 195</td>
<td></td>
</tr>
<tr>
<td>ActiveX Tool Kit</td>
<td>Custom ActiveX controls for Microsoft platforms</td>
<td>$ 595</td>
<td></td>
</tr>
</tbody>
</table>

Galil offers additional quantity discounts for purchases between 1 and 100. Consult Galil for a quotation.
Product Description

Galil’s CDS-3310 is a single-axis controller and drive system for precisely controlling a brush or brushless servo motor. It combines a high-performance, programmable motion controller with a PWM drive in a compact, cost-effective package. The CDS-3310 provides a 10/100 Base-T Ethernet port and up to eight individual CDS-3310 units may be connected on a distributed network and programmed as a single controller. The communication burden is minimized because a host PC only has to talk with the master CDS-3310, which in turn communicates with the other CDS-3310 units in the network.

The CDS-3310 incorporates a 32-bit microcomputer and provides such advanced features as PID compensation with velocity and acceleration feedforward, program memory with multitasking for simultaneously running up to eight programs, and uncommitted I/O for synchronizing motion with external events. Modes of motion include point-to-point positioning, jogging, contouring, and electronic gearing.

Like all Galil motor controllers, these controllers use a simple, English-like command language which makes them very easy to program. Galil’s WSDK servo design software further simplifies system set-up with “one-button” servo tuning and real-time display of position and velocity information. Communication drivers are available for Windows, .NET, and Linux.

Features

- 1-axis motion controller with on-board PWM drive for a brushed or brushless servo motor; 72 V, 7A continuous drive
- Ethernet 10/100Base-T; (1) RS232 port up to 19.2 kbaud
- USB option
- Distributed control allows connection of up to 8 CDS-3310 units on an Ethernet network
- Ethernet supports multiple masters and slaves. TCP/IP, UDP and Modbus TCP master protocol for communication with I/O devices
- Accepts encoder feedback up to 12 MHz
- PID compensation with velocity and acceleration feedforward, integration limits, notch filter and low-pass filter
- Modes of motion include jogging, point-to-point positioning, contouring, electronic gearing and electronic cam
- Over 200 English-like commands executable by controller. Includes conditional statements and event triggers
- Non-volatile memory for programs, variables and arrays. Concurrent execution of up to eight programs
- Dual encoder, home and limits
- 8 TTL uncommitted inputs and 10 TTL outputs
- 2 uncommitted analog inputs and 1 analog output
- Add 8 analog inputs and 40 digital I/O with DB-28040
- ICM-3300 interconnect module provides screw terminals and optical isolation of inputs and outputs
- Brake drive 24V, 0.5A
- High speed position latch and output compare
- Small size: 5.15” x 8.25” metal enclosure
- DIN-Rail mount clip available
- On-board DC-to-DC converter for single 18 V to 72 V DC input
- Communication drivers for Windows, and Linux
- Custom hardware and firmware options available
- SSI encoder interface option
Specifications

System Processor
- Motorola 32-bit microcomputer

Communications Interface
- Ethernet 10/100BASE-T. (1) RS232 port up to 19.2 kbaud
 Commands are sent in ASCII. A binary communication mode is also available as a standard feature
- USB option

Modes of Motion:
- Point-to-point positioning
- Position Tracking
- Jogging
- Electronic Gearing
- Contouring
- Teach and playback

Memory
- Program memory size — 1000 lines × 80 characters
- 510 variables
- 8000 array elements in up to 30 arrays

Filter
- PID (proportional-integral-derivative) with velocity and acceleration feedforward
- Notch and low-pass filter
- Velocity smoothing to minimize jerk
- Integration limit
- Torque limit
- Offset adjustments

Kinematic Ranges
- Position: 32 bit (± 2.15 billion counts per move; automatic rollover; no limit in jog or vector modes)
- Velocity: Up to 12 million counts/sec for servo motors
- Acceleration: Up to 67 million counts/sec

Uncommitted I/O
- 8 buffered inputs
- 10 TTL outputs
- 2 analog inputs; 0–5 Volts, 12-bit ADC*
- 1 uncommitted analog output ±10 V, 16-bit DAC

High Speed Position Latch
- Latches encoder position within 0.1 microseconds

Dedicated Inputs
- Main encoder inputs — Channel A, A-, B, B-, I, I- (± 12 V or TTL)
- Auxiliary encoder inputs
- Forward and reverse limit inputs — buffered**
- Home input — buffered**
- High-speed position latch input — buffered**

Dedicated Outputs
- Analog motor command output with 16-bit DAC resolution
- Error output
- Brake output
- Amp enable
- High-speed position compare output

Minimum Servo Loop Update Time
- 250 microseconds

Maximum Encoder Feedback Rate
- 12 MHz

Drive Specifications
- 18 – 72 V; 7 Amp continuous, 10 Amp peak

Power
- 0.5 A, 5 V available for external devices
- 40 mA, +12 V, -12 V available for external devices
- Requires 18 V – 72 V input

Environmental
- Operating temperature: 0–70º C
- Humidity: 20 – 95% RH, non-condensing

Mechanical
- 5.15” × 8.25” metal enclosure (for high current applications, the metal enclosure should be mounted to a metal backing to dissipate heat)

Connectors
- 37-pin Female D-sub — I/O
- 15-pin HD Female D-sub — encoder

*For ± 10 V use DB-28040

**Optically isolated I/O available with ICM-3300 option.
Ethernet/RS232 1-axis Controller & Drive

CDS-3310

Distributed Control

In some mechanical systems it is advantageous to have CDS-3310 single axis motion controllers physically distributed throughout the system to reduce wiring. Up to eight CDS-3310 units can be distributed per network. Communication overhead and motion coordination issues typical with distributed, single-axis systems are minimized with the CDS-3310. The communication burden with a host PC is minimized because the PC communicates to the CDS-3310 controller configured as the master, which in turn communicates with all other CDS-3310 controllers on the network. This allows multiple controllers connected on an Ethernet network to be programmed as a single controller. A special set of commands for distributed control ease communication issues on the network. For example, the command HC configures the network. The complete list of distributed commands is found in the instruction set shown below.

Distributed Control Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA</td>
<td>Handle Assignment</td>
</tr>
<tr>
<td>HC</td>
<td>Automatic handle configuration</td>
</tr>
<tr>
<td>HQ</td>
<td>Handle Query</td>
</tr>
<tr>
<td>HW</td>
<td>Handle wait</td>
</tr>
<tr>
<td>SA</td>
<td>Send slave command</td>
</tr>
<tr>
<td>ZA</td>
<td>Ethernet user variable</td>
</tr>
<tr>
<td>ZB</td>
<td>Ethernet user variable</td>
</tr>
</tbody>
</table>

Servo Drive Specifications

The CDS-3310 contains a transconductance, PWM drive for driving brushless or brush-type servo motors. The amplifier drives motors operating at 18–72 VDC (voltage at motor is 10% less), up to 7 Amps continuous, 10 Amps peak. The gain settings of the amplifier are user-programmable at 0.4 Amp/Volt, 0.7 Amp/Volt and 1 Amp/Volt. The switching frequency is 60 kHz. The amplifier offers protection for over-voltage, under-voltage, over-current, and short-circuit. The amplifier status can be read through the controller, and the BS command allows easy hall sensor set-up. The SR-19900 shunt regulator is available for the CDS-3310.

I/O Expansion Options

DB-28040 I/O Expansion Board

The DB-28040 mounts directly to the CDS-3310 motor controller and provides an additional 40 digital inputs and outputs, and eight ±10 V analog inputs (default I/O is 3.3 V. For 5 V I/O, order DB-28040-5V). The small 2.55” × 3.08” board attaches directly to the 50-pin header on the CDS-3310 controller, and no cable is required between the controller and I/O board.

The 40 digital I/O signals are available on a 50-pin IDC header, and the analog inputs are available on a 16-pin header. With a controller firmware modification, the I/O board can also be modified to accept feedback from SSI encoders.

ICM-3300 Interconnect Module

The ICM-3300 attaches directly to the CDS-3310 and breaks out the 37-pin D-sub connector into convenient screw terminals allowing for quick and easy connection to system elements. The ICM-3300 also provides optical isolation for inputs and outputs with the exception of the following signals: brake output, output compare, reset input and digital input 8. Outputs 1 through 4 are high-side, 500 mA drives. The maximum common voltage for the I/O is 28 VDC. The ICM-3300 includes a high density 15-pin D-sub connector which allows direct connection to Galil’s BLM-N23 brushless servo motor.

ICM-3300 attached to CDS-3310

Ordering Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>QUANTITY 1</th>
<th>QUANTITY 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDS-3310</td>
<td>1-axis motion controller with 500W servo drive; Ethernet/RS232</td>
<td>$745</td>
<td>$495</td>
</tr>
<tr>
<td>-DIN</td>
<td>DIN-rail mounting clip</td>
<td>$25</td>
<td>$20</td>
</tr>
<tr>
<td>ICM-3300</td>
<td>Screw terminal interface with optical isolation</td>
<td>$245</td>
<td>$145</td>
</tr>
<tr>
<td>DB-28040</td>
<td>I/O expansion board for 8 analog inputs and 40 digital I/O (outputs source 3.3 V)</td>
<td>$295</td>
<td>$195</td>
</tr>
<tr>
<td>DB-28040-5V</td>
<td>I/O expansion board for 40 digital I/O (maximum 24 digital outputs) and 8 analog inputs. Outputs are open collector and sink 5 V</td>
<td>$295</td>
<td>$195</td>
</tr>
<tr>
<td>SR-19900</td>
<td>Shunt regulator for CDS-3310</td>
<td>$75</td>
<td>$40</td>
</tr>
<tr>
<td>CABLE-15-1M</td>
<td>15-pin HD D sub to discrete wires—1 meter</td>
<td>$25</td>
<td>$17</td>
</tr>
<tr>
<td>CABLE-15-2M</td>
<td>15-pin HD D sub to discrete wires—2 meter</td>
<td>$30</td>
<td>$20</td>
</tr>
<tr>
<td>WSDK</td>
<td>Set-up, tuning and analysis software</td>
<td>$195</td>
<td></td>
</tr>
</tbody>
</table>

Galil offers additional quantity discounts for purchases between 1 and 100. Consult Galil for a quotation.
Pocket PLC Series
Smart. Compact. Low-Cost. Packed with I/O.

Galil’s RIO-47xxx programmable logic controller is packed with analog and digital I/O in a compact package. Its powerful RISC processor provides fast I/O handling, logic control, and memory for user-programs. The RIO PLC is easy-to-program with Galil’s Ladder Interface Software or intuitive command language. Plus, the RIO is cost-effective at just $295 in single quantity and unlike most PLCs, analog I/O and Ethernet 10/100Base-T are included at no extra charge. Use them stand-alone or network multiple RIOs to handle all the I/O in your machine.

Packed with I/O

- 8 analog inputs, user-configurable for 0–10 V, 0–5 V, ±5 V, ±10 V, 12-bit or 16-bit ADC
- 8 analog outputs, user-configurable for 0–10 V, 0–5 V, ±5 V, ±10 V, 12-bit or 16-bit DAC
- 16 optically isolated digital inputs, 5–24 VDC
- 8 optically isolated digital outputs rated at 25 mA, 5–24 VDC
- 8 optically isolated digital outputs rated at 500 mA, 12–24 VDC
- Thermocouple and RTD options
- Encoder options

Smart

- RISC processor for fast handling of I/O and logic
- EEPROM memory for non-volatile program storage
- Multitasking, variables, arrays, conditionals, arithmetic and logical operators
- Pulse counter and PID process control loops
- Web interface and email capability
- RS232 and Ethernet 10/100Base-T port; Modbus/TCP master or slave
- Easy to program with Galil’s Ladder Interface Software or Intuitive Command language

Compact

- Measures just 3.88” × 4.26” × 1.30”
- Available with D-type or screw terminals
- D-type connectors; Available with mating ICS for screw-terminal connections
- Powered by Power-over-Ethernet (PoE) or external 18–36 VDC
- LED indicators for all digital I/O points
Product Description

The RIO-47xxx is an intelligent programmable logic controller (PLC) with 100Base-T Ethernet capability. The RIO contains a fast RISC processor for handling I/O logic and is programmed using Galil’s easy-to-use, two-letter command language or Ladder Interface Software.

Each RIO-471xx unit is self-contained with numerous analog and digital I/O including: 8 analog inputs, 8 analog outputs, 16 optically isolated inputs, 8 high-power isolated outputs and 8 low-power isolated outputs. Multiple RIO units can be distributed on an Ethernet network allowing I/O expansion.

The RIO receives power from Power-Over-Ethernet (PoE) or an external 18–36 VDC supply. Measuring just 3.88" x 4.26" x 1.30", the RIO-471xx is packaged in a compact metal enclosure and provides D-type connectors for convenient interface. Mating ICS boards provide screw terminals for fast proto-typing. Mating SCB signal conditioning boards allow interface to RTDs or thermocouples. The RIO-47200 is a DIN rail mount unit with screw terminals.

Features

- Intelligent, Remote Ethernet I/O Controller
- 10/100Base-T Ethernet Link and 115 kb RS232 port
- 8 analog inputs —
 - RIO-47100: 0–5 V; 12-bit ADC
 - RIO-47120: user configurable ±10 V, ±5 V, 0–10 V, 0–5 V
 - 12-bit ADC standard, 16-bit optional
 - Accepts single-ended or differential
 - RIO-47200: 0–5 V; 12-bit ADC (±10 V, 16-bit option)
- 8 analog outputs —
 - RIO-47100: 0–5 V; 12-bit DAC
 - RIO-47120: user configurable ±10 V, ±5 V, 0–10 V, 0–5 V
 - 12-bit DAC standard, 16-bit optional
 - RIO-47200: Optional with SCB-48608
- 16 optically isolated inputs
- RIO-471xx: 8 high-power, isolated outputs rated at 500 mA per output
 - RIO-47200: 16 high-power, isolated outputs rated at 500 mA per output
- 8 isolated outputs rated at 25 mA max per output for RIO-471xx. Optional for RIO-47200
- LED indicators for all digital I/O points
- Contains RISC processor and non-volatile memory for programming I/O events
- Expanded variables, memory and control loops for RIO-471x2 option
- Easy-to-use, 2-letter Galil programming language
- Multitasking threads for simultaneous execution of multiple I/O programs
- Provides pulse counter and process loop control
- Option to read position sensors at 8 MHz, at 25 msec intervals. Specify -QUAD, -SSI, or -BiSS. For RIO-47122 only
- Web interface and email capability for sending messages
- Powered by Power-Over-Ethernet (PoE) or external 18–36 V DC input
- RIO-471xx: 3.88" x 4.26" x 1.30"
 - RIO-47200: 7.19" x 3.52" with DIN tray
- Metal Enclosure for RIO-471xx. DIN for RIO-47200
- D-type connectors for RIO-471xx.
 - Screw terminals for RIO-47200
- Modbus/TCP master or slave
- Galil’s Ladder Interface Software is available for converting Relay Ladder Logic programs into deterministic code for the RIO
- RIO-471xx has ETL and CE certification
- Communication drivers for Windows, Mac OSX, and Linux
Pocket PLC Controller

RIO-47xxx

Specifications

System Processor
- RISC-based clock multiplying processor with DSP functions

Communications Interface
- 10/100Base-T Ethernet port
- RS232 port — 19.2 kbaud, 115 kbaud

Memory (RIO-471x0 and RIO-47200)
- Program memory size: 200 lines x 40 characters
- 126 variables
- 400 array elements in up to 6 arrays
- 2 PID control loops
- 3 Ethernet handles

Memory (RIO-471x2)
- Program memory size: 400 lines x 40 characters
- 254 variables
- 1000 array elements in up to 6 arrays
- 6 PID control loops
- 5 Ethernet handles

I/O
- Digital Outputs 0–7 are opto-isolated sourcing power outputs.
 12–24 VDC, 500 mA* for RIO-471xx. 0–15 for RIO-47200
- Digital Outputs 8–15 are opto-isolated sinking outputs.
 5–24 VDC, 25 mA for RIO-471xx
- Digital Inputs 0–15 are opto-isolated inputs.
 2.2 K series resistor for 5–24 V input
- 8 analog inputs —
 RIO-47100 and -47200: 0–5 V; 100 K input impedance; 12-bit ADC
 RIO-47120: user configurable ±10 V, ±5 V, 0–10 V, 0–5 V
 12-bit ADC standard, 16-bit optional
 Single-ended: 42 K input impedance
 Differential: 31 K input impedance
- 8 analog outputs —
 RIO-47100: 0–5 V; source/sink up to 4 mA; 12-bit DAC
 RIO-47120: user configurable ±10 V, ±5 V, 0–10 V, 0–5 V
 12-bit DAC standard, 16-bit optional; source/sink up to 4 mA
 RIO-47200: Optional with SCB-48608. 12- or 16-bit DAC.

Power
- PoE (Power over Ethernet) or External Power
- Power consumption is 2.5 Watts typical, 4 Watts max.
- External Input is 18 to 36 VDC

Mechanical
- RIO-471xx: 3.88" × 4.26"× 1.30"
- RIO-47200: 7.19" × 3.52" with DIN tray

Environmental
- Operating Temperature: 0–70 °C

*Requires external DC supply.

Connectors for RIO-471xx

Serial

9-pin; Male connector and cable
1 NC
2 Transmit data-output
3 Receive data-input
4 NC
5 Ground
6 NC
7 Clear to Send-input
8 Request to Send-output
9 NC

Analog I/O

26-pin HD Female D-sub
1 NC
2 NC
3 Analog input 7
4 Analog input 4
5 Analog input 1
6 Analog Ground
7 Analog output 5
8 Analog output 2
9 Analog Ground
10 NC
11 NC
12 Analog Ground
13 Analog input 5
14 Analog input 2
15 Analog Ground
16 Analog output 6
17 Analog output 3
18 Analog output 0
19 NC
20 NC
21 Analog input 6
22 Analog input 3
23 Analog input 0
24 Analog output 7
25 Analog output 4
26 Analog output 1

Digital I/O

44-pin HD Female D-sub
1 Digital Input 15
2 Digital Input 12
3 Digital Input 9
4 NC
5 Digital Input 6
6 Digital Input 3
7 Digital Input 0
8 Output Common OP1B–Power (Outputs 8-15)
9 Digital Input 13
10 Digital Output 10
11 Output Common OP1A–Ground (Outputs 8-15)
12 Digital Output 7
13 Digital Output 4
14 Digital Output 1
15 Output Common OP0A–Power (Outputs 0-7)
16 NC
17 Digital Input 13
18 Digital Input 10
19 Input Common 1 (Inputs 8-15)
20 Digital Input 7
21 Digital Input 4
22 Digital Input 1
23 NC
24 Digital Output 14
25 Digital Output 11
26 Digital Output 8
27 Output Common OP0B–Ground (Outputs 0-7)
28 Digital Output 5
29 Digital Output 2
30 Output Common OP0A–Power (Outputs 0-7)
31 Digital Input 14
32 Digital Input 11
33 Digital Input 8
34 NC
35 Digital Input 5
36 Digital Input 2
37 Input Common 0 (Inputs 0-7)
38 Digital Output 15
39 Digital Output 12
40 Digital Output 9
41 NC
42 Digital Output 6
43 Digital Output 3
44 Digital Output 0

External Power
1 Ground
2 18-36 VDC
Pocket PLC Controller

RIO-47xxx

Instruction Set

Ethernet
DH DHCP enable
HS Handle assignment switch
IA Set IP address
IH Internet handle
MA Email server IP address
MB Modbus
MD Email destination address
MI Modbus Integer
MS Email source address
MV Modbus Reversal
WH Ethernet handle

I/O
AO Analog output voltage
AQ Analog configuration
CB Clear bit
II Input interrupt
IQ Input configuration
OB Define output bit
OP Output port
PC Pulse counter enable
SB Set bit
SA Send command
SM Subnet mask

Math Functions
@SIN[x] Sine of x
@COS[x] Cosine of x
@COM[x] 1's complement of x
@ASIN[x] Arc sine of x
@ACOS[x] Arc cosine of x
@ATAN[x] Arc tangent of x
@ABS[x] Absolute value of x
@FRAC[x] Fraction portion of x
@INT[x] Integer portion of x
@RND[x] Round of x
@SQR[x] Square root of x
@TAN[x] Tangent of x
@SINH[x] Hyperbolic sine of x
@COSH[x] Hyperbolic cosine of x
@ATANH[x] Hyperbolic arc tangent of x

I/O (cont.)

(System Configuration)
BN Burn parameters
BP Burn program
BV Burn variables and arrays
CC Configure communication port
CF Configure default port
CI Configure communication interrupt
CW Data adjustment bit
DR Configure I/O data record
EO Echo off
IK Ethernet port blocking
"L"K Lock program
LZ Leading zeros format
PW Password
QD Download array
QU Upload array
RS Reset
"R"S Master reset
VF Variable format

Programming (cont.)
ED Edit program
ELSE Conditional statement
EN End program
ENDIF End of conditional statement
HX Halt execution
IF If statement
IN Input variable
JP Jump
JS Jump to subroutine
NO No operation — for comments
RA Record array, automatic data capture
RC Record interval for RA
RD Record data for RA
RE Return from error
REM Remark
RI Return from interrupt routine
SA Send command
SL Single step
UL Upload program
XQ Execute program
ZC User variable
ZD User variable
ZS Zero stack

Control Loop
AF Analog feedback select
AZ Analog output select
CL Control loop update rate
DB Deadband
IL Integrator limit
KD Derivative constant
KI Integrator constant
KP Proportional constant
OF Offset
PS Control set point

Programming
' Continuation character
' Comments
Label
AUTO Auto subroutine on power-up
AUTOERR Auto subroutine on EEPROM error
TCPERR Auto subroutine on TCP error
CMDERR Auto subroutine on command error
COMMINT Auto subroutine on communication interrupt
ININT Auto subroutine on input interrupt
[] Array index operator
; Command delimiter
AB Abort program
BK Breakpoint
CI Communication interrupt
DA Deallocate variables/arrays
DL Download program
DM Dimension arrays

Interrogation
ID Identify
LA List arrays
LL List labels
LS List program
LV List variables
MG Message command
QR Data record
QU Upload array
QZ Return data record information
'R'V Revision
TB Tell status byte
TC Tell error code
TE Tell Error
TH Tell Ethernet handles
TI Tell Input
TIME Time operand, internal clock
TR Trace program
TZ Tell I/O configuration
WH Ethernet handle

Trippoint
AA After analog input
AI After input
AT At time
WT Wait for time
Ladder Interface Software

Galil’s Ladder Interface Software is a software tool for the RIO-47xxx Pocket PLC. The software converts a relay Ladder Logic program into code for input into the RIO controller. Ladder Logic is often used by programmable logic controller (PLC) programmers to graphically input I/O logic. While direct RIO programming using Galil’s two-letter text instructions allows for flexible coding, it is sometimes easier to determine the I/O logic visually with Ladder Logic.

The Ladder Interface Software provides an easy-to-use graphical interface that allows object types for: contacts, coils, control relays, boxes (including timers, counters and data manipulation) and analog I/O. The software generates an RIO program from the specified objects in the flow diagram. In addition to generating optimized code, Galil’s Ladder Interface Software automatically adds determinism to the RIO program.

Features

- Object types include:
 - Contacts
 - Coils
 - Control relays (virtual contacts/coils)
 - Boxes (including timers, counters and data manipulation)
 - Analog I/O
- Standard mathematical and logical operators include:
 - Equal, Not Equal, Less than, Greater than
 - AND, OR (normally open or normally closed)
 - Add, Subtract, Multiply, Divide, Increment, Decrement
 - Shift or rotate accumulator left or right
- Galil command box for specifying any valid Galil two-letter command

On-Timer (TON) Ladder Logic Example

Up-Counter (CTU) and comparative logic example

One-shot output (PD) and variable manipulation example
Pocket PLC Controller

RIO-47xxx

High Power Sourcing Outputs (RIO-471xx: 0–7, RIO-47200: 0–15) Opto-isolated sourcing power outputs. 12–24 VDC with 500 mA of current capability per output.

Low Power Sinking Outputs (RIO-471xx: 8–15)
Opto-isolated sinking outputs. 5–24 VDC with 25 mA of current capability in a sinking configuration.

Digital Inputs: Digital inputs 0–15 are opto-isolated inputs with a range of 5–24 VDC.

Ordering Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIO-47100</td>
<td>PLC with 0–5 V analog I/O; 12-bit ADC/DAC</td>
</tr>
<tr>
<td>RIO-47120</td>
<td>PLC with ±10 V analog I/O; 12-bit ADC/DAC</td>
</tr>
<tr>
<td>RIO-4712x-16</td>
<td>16-bit ADC/DAC option for RIO-47120 or -47122</td>
</tr>
<tr>
<td>RIO-47102</td>
<td>RIO-47100 with expanded memory</td>
</tr>
<tr>
<td>RIO-47122</td>
<td>RIO-47120 with expanded memory</td>
</tr>
<tr>
<td>-DIN</td>
<td>DIN-rail mounting option for RIO-471xx</td>
</tr>
<tr>
<td>RIO-47200</td>
<td>RIO with screw terminals and DIN. 12-bit, 0–5 VDC analog inputs. Consult factory for additional analog I/O options (±10 V, 16-bit)</td>
</tr>
<tr>
<td>SCB-48608-5V12bit</td>
<td>-47200 Option for 8 analog outputs. 12-bit DAC; 0-5 V. Specify RIO-47200-8AO_5v12bit</td>
</tr>
<tr>
<td>SCB-48608-10V12bit</td>
<td>-47200 Option for 8 analog outputs. 12-bit DAC; 0-5 V, 0-10 V, ±10 V. Specify RIO-47200-8AO_10v12bit</td>
</tr>
<tr>
<td>SCB-4860-10V16bit</td>
<td>-47200 Option for 8 analog outputs. 16-bit DAC; 0-5 V, 0-10 V, ±10 V. Specify RIO-47200-8AO_10v16bit</td>
</tr>
<tr>
<td>SCB-48206</td>
<td>Signal conditioning board for interface to 6 RTDs</td>
</tr>
<tr>
<td>SCB-48306</td>
<td>Signal conditioning board for interface to 6 thermocouples</td>
</tr>
<tr>
<td>SCB-48316</td>
<td>Above with thermocouple connectors</td>
</tr>
<tr>
<td>CABLE-44-1M</td>
<td>44-pin D HD male cable to discrete wires</td>
</tr>
<tr>
<td>CABLE-26-1M</td>
<td>26-pin D HD male cable to discrete wires</td>
</tr>
<tr>
<td>ICS-48026-M</td>
<td>26-pin D HD male to screw terminals</td>
</tr>
<tr>
<td>ICS-48044-M</td>
<td>44-pin D HD male to screw terminals</td>
</tr>
<tr>
<td>-HS</td>
<td>High-speed counter option, 3 MHz</td>
</tr>
<tr>
<td>-422</td>
<td>RS422 option</td>
</tr>
<tr>
<td>-QUAD, -BiSS, -SSI</td>
<td>Position sensor option for RIO-47122</td>
</tr>
<tr>
<td>4-20mA</td>
<td>For 4-20mA analog inputs</td>
</tr>
<tr>
<td>PS-0.25-24</td>
<td>24 V, 6-watt power supply for RIO</td>
</tr>
<tr>
<td>PS-2.50-24</td>
<td>24 V, 60-watt power supply for RIO</td>
</tr>
<tr>
<td>Ladder Interface Software</td>
<td>Converts Relay Ladder logic into deterministic code for RIO</td>
</tr>
</tbody>
</table>

GalilTools-Lite
Editor, Terminal, Watch Tools. Includes communication library for developers—supports C++, VB, C#, LabVIEW and more
Free download

GalilTools
Above with Scope and Tuner $195

Galil offers additional quantity discounts for purchases between 1 and 100. Consult Galil for a quotation.
Editor, Scope, Tuner & Watch Software Tools

GalilTools

Product Description
GalilTools is the newest set of software for current motion controllers. GalilTools replaces the WSDK Tuning software with an improved user-interface, real-time scopes and communications utilities.

The powerful Scope Tool is ideal for system analysis as it captures numerous types of data for each axis in real-time. Up to eight channels of data can be displayed at once, and additional real-time data can be viewed by changing the scope settings. This allows literally hundreds of parameters to be analyzed during a single data capture sequence. A rising or falling edge trigger feature is also including for precise synchronization of data.

GalilTools also includes a Program Editor Tool which allows multiple editors to be open simultaneously for convenient programming of Galil controllers. The Watch Tool displays controller status at a glance and includes units and scale factors for easy viewing. The Tuning Tool helps select PID parameters for optimal servo performance.

GalilTools runs on Windows, Linux, and Mac platforms as standard with other platforms available on request.

GalilTools-Lite is available at no charge and contains the Editor, Terminal and Watch tools only.

Features
- Powerful software tools for Galil motor controllers
- Terminal Tool for sending and receiving Galil commands
- Scope Tool with trigger displays up to 8 channels of real-time data
- Tuning Tool for automatic and manual PID tuning of servo systems
- Watch Tool with units for displaying controller status such as I/O and motion
- Easy-to-use interface provides toolbar for access to frequently used tools
- Multiple Document Interface (MDI) allows display of multiple editors. Features tiling and cascading
- Dock feature for docking or floating tools
- Operates with Windows, Linux, and Mac as standard. Other platforms upon request
- Automatically displays all available Ethernet, serial and PCI connections
- Efficient, high-speed communication drivers for Galil controllers
- Powerful and easy to use Galil Tools Communication Library for use with VB, C#, C++ and more. Includes onInterrupt, onMessage, and onRecord events for easy, event-driven programming.
- For DMC-40x0, DMC-41x3, DMC-21x3, and RIO Ethernet controllers, and DMC-18x6 and DMC-18x2 PCI controllers

GalilTools Provides Multiple Tools for Set-up and Tuning Motion Systems. The Various Tools such as Tuner, Scope, Terminal, Watch, Editor can be Displayed on a Single Screen or Separately.
Software

Watch Tool Displays Controller and I/O status.

Tuner Tool Automatically or Manually Finds the Best PID Values for a Step Response.

Terminal Tool Allows Controller Commands to be Sent and Received.

Scope Tool Displays up to 8 Channels of Data (all data is recorded). Includes Trigger.

Editor Tool Allows Application Programs to be Edited, Uploaded and Downloaded.
Software Tool for PVT Mode of Motion
GalilPVT

Product Description

GalilPVT is a developer’s tool for using the PVT (Position, Velocity, Time) mode of motion on the DMC-40x0 series motion controller. PVT is one of Galil’s more sophisticated modes of motion, and the GalilPVT software tool allows the user to visualize the planned trajectory prior to sending the data to the controller. GalilPVT is offered as a free trial, with saving data disabled. The full version allows the user to save the output data of the software.

Features

- Open PVT data in CSV and DMC formats
- Open Contour data in CSV and DMC formats
- Convert Contour data to PVT data
- “Segment View” display of each PVT point as it would be commanded by the user including elapsed time, total distance, incremental position, velocity, and incremental time. Segment data can be edited.
- “Kinematics View” display of controller internal calculations on a profile-by-profile basis including distance, velocity, acceleration, and jerk.
- Graphing capabilities
 - Multi-axis graphing of Position, Velocity, Acceleration, and Jerk vs. time
 - Single axis graphing of up to two data sets, e.g. Position and Velocity vs. time
 - Two axis position vs. position graphing for coordinated motion planning
- “Motion Summary” providing timing, and maximum velocity, acceleration and jerk throughout the move.
- Stream capability to connect to a controller and stream an arbitrarily long segment list to a DMC-40x0.
ActiveX Tools
ActiveX Tool Kit

Product Description
Galil's ActiveX Tool Kit is a powerful software package that lets the designer quickly and easily create an operator interface for Galil controllers using any Windows programming language that supports ActiveX.

Pre-built objects include a DMC terminal, polling window, send files and storage scope functions. Dialog boxes allow objects to be easily customized for color, size, location and text.

The Tool Kit shortens the development time of an operator interface from days or weeks to a matter of hours. Plus, the tool kit is easy to use, making it ideal for even the novice programmer.

Features
- Provides 32-bit OCXs for handling controller communications including support of interrupts
- Objects install right into the Visual Basic tool box
- Pre-built objects for many functions including:
 - Terminal for sending commands and editing programs
 - Polling window for displaying responses from the controller such as position and speed
 - Storage scope for plotting trajectories such as position vs. time or X vs. Y
 - Send file for sending .SEN files
 - Continuous array capture for data collection and teach and playback
 - Graphical display of 2D-motion path
 - Diagnostics for capturing current configurations
 - Vector Motion Tools to slow down around corners and tool offset
- Built-in dialog boxes for each object for easy selection of color, size, location and text
- Context sensitive help with hypertext links

Microsoft's Visual Basic and Galil's ActiveX Tool Kit make developing an operator interface for the controller quick and easy.

The Polling window object allows responses from the controller to be displayed. You can poll for data such as position, speed and error for any axis.

Here, a Visual Basic screen was created for jogging motors while the X and Y real time position is displayed. Motion occurs when the operator clicks on the jog buttons.
Product Description

CADTODMC is a software tool that translates AutoCAD or equivalent .DXF files into controller motion commands. The designer draws the two-dimensional motion path using AutoCAD software and then uses the translator to obtain a DMC command file. Text macros, which call for specific operations along the path, can be incorporated in the drawing.

Features

- Translates AutoCAD® or equivalent .DXF file to .DMC controller file
- Translates two-dimensional contours including lines and arcs
- Can specify continuous or stop-start motion along motion path
- Translates motion dependent I/O events
- User-definable text macros can be defined on the CAD drawing
- Tool-offset feature
- Allows specification of first and last motion segments and path-order numbers

This drawing is a motion description for an engraving machine. The line type directives form two functions. The cutting head is raised and lowered by the Z axis, and the motion mode is changed. The curves operate in STOP_MODE so that large accelerations do not occur at the sharp corners in the letters. SMOOTH_MODE is used for the traverse because the lines and arcs connect smoothly.

Software Tools

Ordering Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>GalilTools-Lite</td>
<td>Editor, Terminal, Watch Tools. Includes communication library for developers-supports C++, VB, C#, LabVIEW and more</td>
<td>Free download</td>
</tr>
<tr>
<td>GalilTools</td>
<td>Above with Scope and Tuner</td>
<td>$ 195</td>
</tr>
<tr>
<td>GalilPVT</td>
<td>Generates PVT data</td>
<td>$ 195</td>
</tr>
<tr>
<td>ActiveX Tool Kit</td>
<td>Custom ActiveX controls for Microsoft platforms</td>
<td>$ 595</td>
</tr>
<tr>
<td>CADTODMC</td>
<td>DXF to DMC translator</td>
<td>$ 595</td>
</tr>
<tr>
<td>WSDK</td>
<td>Prior generation tuning software for older controllers</td>
<td>$ 195</td>
</tr>
<tr>
<td>Third-party Software</td>
<td>Consult Galil for available third-party software such as CNC software</td>
<td>Consult</td>
</tr>
</tbody>
</table>

Windows, Visual Basic, and ActiveX are trademarks of Microsoft Corporation.
Galil’s Optima motor controllers are prior generation controllers that are still sold and supported by Galil. Galil offers Optima motion controllers in PCI, PC/104, ISA and Ethernet/RS232. These controllers are available as full-featured, multi-axis Optima controllers or as single-axis controllers. Complete specifications are included on Galil’s website.

Optima Motion Controllers

<table>
<thead>
<tr>
<th></th>
<th>Multi-Axis Optima: Bus-based</th>
<th>Multi-Axis Optima: Stand-alone</th>
<th>Single Axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication interface</td>
<td>PC/104: DMC-12x0 ISA: DMC-17x0 PCI: DMC-18x0</td>
<td>Ethernet/RS232: DMC-22x0 USB/RS232: DMC-20x0</td>
<td>PC/104: DMC-1411 RS232: DMC-1412 PCI: DMC-1417</td>
</tr>
<tr>
<td>Form factor</td>
<td>card</td>
<td>box</td>
<td>card</td>
</tr>
<tr>
<td>Number of axes</td>
<td>(x=1,2,3,4,5,6,7,8)</td>
<td>(x=1,2,3,4,5,6,7,8)</td>
<td>1</td>
</tr>
<tr>
<td>Connector type</td>
<td>100-pin SCSI</td>
<td>100-pin SCSI</td>
<td>37-pin D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40-pin for DMC-1411</td>
</tr>
<tr>
<td>Mating interconnect module</td>
<td>ICM-1900/-2900</td>
<td>ICM-2900</td>
<td>ICM-1460</td>
</tr>
<tr>
<td>Power requirement</td>
<td>5V, +/-12V</td>
<td>90-260 VAC</td>
<td>5V, +/-12V</td>
</tr>
<tr>
<td>Maximum encoder rate</td>
<td>12 MHz</td>
<td>12 MHz</td>
<td>8 MHz</td>
</tr>
<tr>
<td>Maximum stepper rate</td>
<td>3 MHz</td>
<td>3 MHz</td>
<td>2 MHz</td>
</tr>
<tr>
<td>Minimum servo update time</td>
<td>1-2-axes: 125 usec</td>
<td>1-2 axes: 250 usec</td>
<td>1-axis: 375 usec</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-8 axes: 625 usec</td>
<td></td>
</tr>
<tr>
<td>Optoisolated digital inputs</td>
<td>yes, except for DMC-12x0</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td># of uncommitted digital inputs</td>
<td>1-4 ax: 8; 5-8 ax: 16</td>
<td>1-4 ax: 8; 5-8 ax: 16</td>
<td>7</td>
</tr>
<tr>
<td># of uncommitted digital outputs</td>
<td>1-4 ax: 8; 5-8 ax: 16</td>
<td>1-4 ax: 8; 5-8 ax: 16</td>
<td>3</td>
</tr>
<tr>
<td># of analog inputs</td>
<td>8</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td># of programmable I/O</td>
<td>64 (with DB-1x064)</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>Dual encoder for each axis</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Program memory size (lines x chr)</td>
<td>1000 x 80</td>
<td>1000 x 80</td>
<td>250 x 40</td>
</tr>
<tr>
<td>Array size (number of elements)</td>
<td>8000</td>
<td>8000</td>
<td>1000</td>
</tr>
<tr>
<td># of variables</td>
<td>254</td>
<td>510</td>
<td>126</td>
</tr>
<tr>
<td># of tasks for multitasking</td>
<td>8</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>
PC/104, ISA, PCI Optima 1–8 axes

DMC-12x0, DMC-17x0, DMC-18x0, DMC-22x0, DMC-20x0 Series

Ordering Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>QUANTITY 1</th>
<th>QUANTITY 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMC-1210, -1710, -1810</td>
<td>1-axis PC/104 or ISA or PCI</td>
<td>$1095</td>
<td>$795</td>
</tr>
<tr>
<td>DMC-1220, -1720, -1820</td>
<td>2-axis PC/104 or ISA or PCI</td>
<td>$1495</td>
<td>$875</td>
</tr>
<tr>
<td>DMC-1230, -1730, -1830</td>
<td>3-axis PC/104 or ISA or PCI</td>
<td>$1895</td>
<td>$935</td>
</tr>
<tr>
<td>DMC-1240, -1740, -1840</td>
<td>4-axis PC/104 or ISA or PCI</td>
<td>$2195</td>
<td>$995</td>
</tr>
<tr>
<td>DMC-1250, -1750, -1850</td>
<td>5-axis PC/104 or ISA or PCI</td>
<td>$2595</td>
<td>$1345</td>
</tr>
<tr>
<td>DMC-1260, -1760, -1860</td>
<td>6-axis PC/104 or ISA or PCI</td>
<td>$2795</td>
<td>$1425</td>
</tr>
<tr>
<td>DMC-1270, -1770, -1870</td>
<td>7-axis PC/104 or ISA or PCI</td>
<td>$2995</td>
<td>$1525</td>
</tr>
<tr>
<td>DMC-1280, -1780, -1880</td>
<td>8-axis PC/104 or ISA or PCI</td>
<td>$3195</td>
<td>$1595</td>
</tr>
<tr>
<td>CB-50-100-1200</td>
<td>50-pin to 100-pin converter board which includes two 50-pin cables</td>
<td>$75</td>
<td>$50</td>
</tr>
<tr>
<td>CABLE-20-25</td>
<td>20-pin IDC to 25-pin D type for dual encoders</td>
<td>$15</td>
<td>$15</td>
</tr>
<tr>
<td>DMC-2010 (or 2210)</td>
<td>1-axis USB, RS232 (or 1-axis Ethernet 10/100BASE-T, RS232)</td>
<td>$1595</td>
<td>$995</td>
</tr>
<tr>
<td>DMC-2020 (or 2220)</td>
<td>2-axis USB, RS232 (or 2-axis Ethernet 10/100BASE-T, RS232)</td>
<td>$1995</td>
<td>$1145</td>
</tr>
<tr>
<td>DMC-2030 (or 2230)</td>
<td>3-axis USB, RS232 (or 3-axis Ethernet 10/100BASE-T, RS232)</td>
<td>$2395</td>
<td>$1195</td>
</tr>
<tr>
<td>DMC-2040 (or 2240)</td>
<td>4-axis USB, RS232 (or 4-axis Ethernet 10/100BASE-T, RS232)</td>
<td>$2595</td>
<td>$1295</td>
</tr>
<tr>
<td>DMC-2050 (or 2250)</td>
<td>5-axis USB, RS232 (or 5-axis Ethernet 10/100BASE-T, RS232)</td>
<td>$2895</td>
<td>$1445</td>
</tr>
<tr>
<td>DMC-2060 (or 2260)</td>
<td>6-axis USB, RS232 (or 6-axis Ethernet 10/100BASE-T, RS232)</td>
<td>$3095</td>
<td>$1545</td>
</tr>
<tr>
<td>DMC-2070 (or 2270)</td>
<td>7-axis USB, RS232 (or 7-axis Ethernet 10/100BASE-T, RS232)</td>
<td>$3295</td>
<td>$1645</td>
</tr>
<tr>
<td>DMC-2080 (or 2280)</td>
<td>8-axis USB, RS232 (or 8-axis Ethernet 10/100BASE-T, RS232)</td>
<td>$3495</td>
<td>$1745</td>
</tr>
<tr>
<td>FIBEROPTIC</td>
<td>Ethernet 10/100BASE-F, RS232 fiberoptic link</td>
<td>$200</td>
<td>$150</td>
</tr>
<tr>
<td>ICM-2900</td>
<td>Interconnect module (use 1 for every 4 axes). Specify -HAEN for high amp enable or -LAEN for low amp enable. Specify -FL for flange</td>
<td>$295</td>
<td>$195</td>
</tr>
<tr>
<td>ICM-2900-OPTO</td>
<td>ICM with optoisolated outputs</td>
<td>$345</td>
<td>$245</td>
</tr>
<tr>
<td>ICM-2908</td>
<td>Interconnect module for auxiliary encoders</td>
<td>$125</td>
<td>$95</td>
</tr>
<tr>
<td>CABLE-100-1M</td>
<td>100-pin HD cable in 1 meter length</td>
<td>$165</td>
<td>$125</td>
</tr>
<tr>
<td>CABLE-100-2M</td>
<td>100-pin HD cable in 2-meter length</td>
<td>$180</td>
<td>$135</td>
</tr>
<tr>
<td>CABLE-100-4M</td>
<td>100-pin HD cable in 4 meter length</td>
<td>$195</td>
<td>$145</td>
</tr>
<tr>
<td>CABLE-36-1M</td>
<td>36-pin HD cable in 1-meter length (for aux encoders)</td>
<td>$90</td>
<td>$75</td>
</tr>
<tr>
<td>CABLE-36-3M</td>
<td>36-pin HD cable in 3-meter length (for aux encoders)</td>
<td>$110</td>
<td>$90</td>
</tr>
<tr>
<td>CABLE-80-1M</td>
<td>80-pin HD cable in 1-meter length (for extended I/O)</td>
<td>$125</td>
<td>$95</td>
</tr>
<tr>
<td>CABLE-80-4M</td>
<td>80-pin HD cable in 4-meter length (for extended I/O)</td>
<td>$150</td>
<td>$105</td>
</tr>
<tr>
<td>AMP-19520</td>
<td>2-axis amplifier for 500 W servos</td>
<td>$595</td>
<td>$395</td>
</tr>
<tr>
<td>AMP-19540</td>
<td>4-axis amplifier for 500 W servos</td>
<td>$795</td>
<td>$495</td>
</tr>
<tr>
<td>-SR</td>
<td>Shunt regulator option for AMP-195x0</td>
<td>$50</td>
<td>$25</td>
</tr>
</tbody>
</table>

Galil offers additional quantity discounts for purchases between 1 and 100. Consult Galil for a quotation.
PC/104, RS232, PCI Single-Axis

DMC-1411, DMC-1412, DMC-1417

Ordering Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>QUANTITY 1</th>
<th>QUANTITY 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMC-1411</td>
<td>1-axis PC/104 motor controller</td>
<td>$ 595</td>
<td>$ 395</td>
</tr>
<tr>
<td>DMC-1412-card</td>
<td>1-axis stand-alone with RS232 — card</td>
<td>$ 595</td>
<td>$ 395</td>
</tr>
<tr>
<td>DMC-1412-box</td>
<td>1-axis stand-alone with RS232 in enclosure with power supply</td>
<td>$ 795</td>
<td>$ 545</td>
</tr>
<tr>
<td>DMC-1417</td>
<td>1-axis PCI motor controller</td>
<td>$ 595</td>
<td>$ 395</td>
</tr>
<tr>
<td>CABLE 37-pin D</td>
<td>37-pin cable for DMC-1410, DMC-1412, DMC-1417</td>
<td>$ 25</td>
<td></td>
</tr>
<tr>
<td>CABLE 40-pin IDC</td>
<td>40-pin to 37-pin cable for DMC-1411</td>
<td>$ 25</td>
<td></td>
</tr>
<tr>
<td>ICM-1460</td>
<td>Interconnect Module for DMC-1400 series. Specify -HAEN for high amp enable or -LAEN for low amp enable</td>
<td>$ 145</td>
<td>$ 95</td>
</tr>
<tr>
<td>ICM-1460-OPTO</td>
<td>ICM with optoisolated inputs and outputs</td>
<td>$ 195</td>
<td>$ 145</td>
</tr>
<tr>
<td>Galil Utilities</td>
<td>Communication drivers, SmartTERM, DMCWIN software</td>
<td>$ 20 for CD; free download</td>
<td></td>
</tr>
<tr>
<td>DMCWIN32</td>
<td>Windows API Tool Kit (VB, C, C++, etc.)</td>
<td>Included with Utilities</td>
<td></td>
</tr>
<tr>
<td>WSDK</td>
<td>Set-up, tuning and analysis software</td>
<td>$ 195</td>
<td></td>
</tr>
<tr>
<td>ActiveX Tool kit</td>
<td>Custom ActiveX controls for Microsoft platforms</td>
<td>$ 595</td>
<td></td>
</tr>
</tbody>
</table>

Galil offers additional quantity discounts for purchases between 1 and 100. Consult Galil for a quotation.
Product Description
The IOC-7007 I/O logic controller provides an intelligent solution for handling inputs and outputs. The IOC-7007 controller base accepts up to seven Galil I/O IOM modules. IOM modules are available with TTL inputs, optoisolated inputs, optoisolated outputs, high power outputs, dry contact relays, analog inputs and analog outputs.

Galil’s IOC-7007 has a 10/100 Base-T auto-negotiable Ethernet port allowing it to communicate with multiple devices in an Ethernet network. This allows easy integration of Galil’s Ethernet motion controllers with I/O and eliminates the need for an external PLC.

The IOC-7007 is programmable and includes 500 lines of non-volatile program memory, variables, arrays and multitasking for concurrent execution of up to eight different programs. The controller also includes 1 PLC thread with deterministic timing. The programming language is similar to Galil’s motion controller language allowing seamless integration of motion and I/O.

The IOC-7007 is available as a packaged unit, as a DIN rail mount unit, or as a card-level unit. The box-level version accepts 90 – 260 VAC or 20 – 60 VDC. The DIN rail and card-level unit accept 20 – 60 VDC.

Features
- Intelligent Input/Output Controller IOC includes 32-bit microcomputer with memory and multitasking for programming I/O events.
- Install up to seven plug-in IOM modules to handle many input and output functions.
- “Mix and Match” I/O modules to meet specific requirements. I/O modules for:
 - 16 TTL Inputs
 - 8 optoisolated inputs
 - 8 optoisolated outputs
 - 8 high power outputs
 - 4 dry contact relays
 - 4 or 8 analog outputs
 - 8 analog inputs
- Interfaces with other Galil Ethernet motion controllers or Ethernet I/O devices
- Ethernet 10/100 Base-T with auto-negotiate function for communicating with 100 Base-T or 10 Base-T devices; One RS232 port up to 19.2 kbaud
- Supports Modbus TCP in both master and slave mode for interface to other Modbus devices.
- I/O commands and programming are similar to Galil motion controller programming. Additional commands for I/O processing and PLC functions are included. Easy integration of Galil Ethernet motion controller with IOC-7007
- 8 multitasking threads for simultaneous execution of multiple I/O programs. One additional thread for PLC mode
- PLC mode for fast I/O scans with deterministic timing
- Fast command processing time — less than 100 microseconds
- Non-volatile memory includes 500 line x 80 characters program space; 126 symbolic variables; 2000 elements in up to 14 arrays
- Accepts 90-260 VAC 50/60 Hz or 20 – 60 VDC
- Packaging options include: metal enclosure, DIN rail mount, or card-level
- 20-pin Molex connectors for easy interface to I/O modules
Ethernet I/O Controller

IOC-7007

Ordering Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>QUANTITY 1</th>
<th>QUANTITY 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOC-7007-BOX-AC</td>
<td>I/O Controller Base; BOX; 90 – 260 AC</td>
<td>$ 595</td>
<td>$ 495</td>
</tr>
<tr>
<td>IOC-7007-BOX-DC</td>
<td>I/O Controller Base; BOX; 20 – 60 VDC</td>
<td>$ 595</td>
<td>$ 495</td>
</tr>
<tr>
<td>IOC-7007-DIN-DC</td>
<td>I/O Controller Base; DIN; 20 – 60 VDC</td>
<td>$ 595</td>
<td>$ 495</td>
</tr>
<tr>
<td>IOC-7007-CARD-DC</td>
<td>I/O Controller Base; CARD; 20 – 60 VDC</td>
<td>$ 545</td>
<td>$ 445</td>
</tr>
<tr>
<td>IOC-7007-CARD-NS</td>
<td>I/O Controller Base; CARD; no supply (requires +5 V, ±12 V inputs)</td>
<td>$ 495</td>
<td>$ 395</td>
</tr>
<tr>
<td>IOM-70016</td>
<td>I/O Module — 16 TTL inputs</td>
<td>$ 30</td>
<td>$ 20</td>
</tr>
<tr>
<td>IOM-70108</td>
<td>I/O Module — 8 optoisolated inputs</td>
<td>$ 30</td>
<td>$ 20</td>
</tr>
<tr>
<td>IOM-70208</td>
<td>I/O Module — 8 optoisolated outputs (24 V @ 25 mA)</td>
<td>$ 30</td>
<td>$ 20</td>
</tr>
<tr>
<td>IOM-70308</td>
<td>I/O Module — 8 low-side, high-power outputs (24 V @ 100 mA)</td>
<td>$ 30</td>
<td>$ 20</td>
</tr>
<tr>
<td>IOM-70404</td>
<td>I/O Module — 4 dry contact relays (150 V @ 250 mA)</td>
<td>$ 55</td>
<td>$ 40</td>
</tr>
<tr>
<td>IOM-70508</td>
<td>I/O Module — 8 high-side, high-power outputs (30 V @ 500 mA)</td>
<td>$ 45</td>
<td>$ 30</td>
</tr>
<tr>
<td>IOM-70808</td>
<td>I/O Module — 8 analog inputs (12-bits)</td>
<td>$ 60</td>
<td>$ 45</td>
</tr>
<tr>
<td>IOM-70904</td>
<td>I/O Module — 4 analog outputs (12-bits)</td>
<td>$ 30</td>
<td>$ 20</td>
</tr>
<tr>
<td>IOM-70908</td>
<td>I/O Module — 8 analog outputs (12-bits)</td>
<td>$ 60</td>
<td>$ 45</td>
</tr>
</tbody>
</table>

Note: One IOC-7007 controller base accepts up to seven (7) IOM modules

Galil offers additional quantity discounts for purchases between 1 and 100. Consult Galil for a quotation.
Product Description

The BLM-N23-50-1000-B brushless servo motor with incremental encoder is a low cost, high performance motor well suited for OEM applications. This motor has a high torque to inertia ratio making it ideal for point-to-point applications requiring fast acceleration. The BLM-N23-50-1000-B provides 55 oz-in of continuous torque in a Nema 23 frame size package.

Specifications

Differential Quadrature Incremental Encoder
- Resolution: 1000 lines, with index pulse
- Input Power: 5VDC ±5% at 120 mA max
- Output Signals: Line Driver AM26LS31 (20 mA absolute maximum sink or source per output channel)
- Moment of Inertia: 3.5×10^{-3} in-oz sec2 \((2.5 \times 10^{-5}$ kg-m2)
- Maximum Acceleration: 100000 rad/sec2 max.
- Maximum Velocity: 5000 RPM max
- Operating Temperature: -20 °C to 100 °C
- Storage Temperature: -40 °C to 125 °C
- Relative Humidity: 98% non-condensing

Encoder Pin Header

15 Pin, HD D-Type:

<table>
<thead>
<tr>
<th>Wire Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Orange</td>
<td>Index+</td>
</tr>
<tr>
<td>2 Blue</td>
<td>Channel B+</td>
</tr>
<tr>
<td>3 Brown</td>
<td>Channel A+</td>
</tr>
<tr>
<td>4 Red/white</td>
<td>Hall V-*</td>
</tr>
<tr>
<td>5 Black</td>
<td>GND</td>
</tr>
<tr>
<td>6 Yellow</td>
<td>Index-</td>
</tr>
<tr>
<td>7 Green</td>
<td>Channel B-</td>
</tr>
<tr>
<td>8 White</td>
<td>Channel A-</td>
</tr>
<tr>
<td>9 NC</td>
<td>N/A</td>
</tr>
<tr>
<td>10 Violet</td>
<td>Hall U+</td>
</tr>
<tr>
<td>11 Grey</td>
<td>Hall U-*</td>
</tr>
<tr>
<td>12 Yellow/white</td>
<td>Hall W-*</td>
</tr>
<tr>
<td>13 Brown/white</td>
<td>Hall V+</td>
</tr>
<tr>
<td>14 Orange/white</td>
<td>Hall W+</td>
</tr>
<tr>
<td>15 Red</td>
<td>+5V</td>
</tr>
</tbody>
</table>

*Unused with Galil amplifiers

Note: Specify BLM-N23-50-1000-B (for DMC-4000) if connecting the motor to DMC-4000 amplifiers.
Specifications

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>UNITS</th>
<th>MODEL NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_t—Torque Constant</td>
<td>Nm/A oz-in/A</td>
<td>BLM-N23-50-1000-B</td>
</tr>
<tr>
<td>T_c—Continuous Torque</td>
<td>Nm oz-in</td>
<td>0.08 12.1</td>
</tr>
<tr>
<td>T_p—Peak Torque</td>
<td>Nm oz-in</td>
<td>0.39 55</td>
</tr>
<tr>
<td>Continuous Current</td>
<td>A</td>
<td>0.83 120</td>
</tr>
<tr>
<td>Peak Current</td>
<td>A</td>
<td>4.9 10.4</td>
</tr>
<tr>
<td>J_m—Moment of Inertia</td>
<td>kg•m2/oz-in-s2</td>
<td>2.5 x 10$^{-5}$ 3.5 x 10$^{-3}$</td>
</tr>
<tr>
<td>Recommended Supply Voltage</td>
<td>volts</td>
<td>48</td>
</tr>
<tr>
<td>ω_m—Maximum Speed</td>
<td>rpm</td>
<td>5000</td>
</tr>
<tr>
<td>R—Armature Resistance</td>
<td>ohm</td>
<td>1.2</td>
</tr>
<tr>
<td>L—Armature Inductance</td>
<td>mH</td>
<td>2.6</td>
</tr>
<tr>
<td>R_{th}—Thermal Resistance</td>
<td>°C/W</td>
<td>1.04</td>
</tr>
<tr>
<td>T_m—Electro-mechanical Time Constant</td>
<td>msec</td>
<td>4.5</td>
</tr>
<tr>
<td>Length with Encoder</td>
<td>in</td>
<td>4.5</td>
</tr>
<tr>
<td>Diameter</td>
<td>in</td>
<td>2.2459</td>
</tr>
<tr>
<td>Shaft Diameter</td>
<td>in</td>
<td>0.25</td>
</tr>
<tr>
<td>Weight</td>
<td>kg lbs</td>
<td>1.0 2.2</td>
</tr>
<tr>
<td>Encoder Resolution</td>
<td>lines/rev</td>
<td>1000</td>
</tr>
</tbody>
</table>

Price: qty 1 $425
Price: qty 100 $320

BLM-N23-50-1000-B

Phase R—Red
Phase S—White
Phase T—Black
Servo Motor Compensation Features

Galil motor controllers provide a compensation filter, which includes a PID (Proportional-Integral-Derivative) filter followed by a notch filter and a low-pass filter. The compensation also includes velocity and acceleration feedforward. All filter parameters are adjustable, allowing servo system tuning for best performance. Dual loop control is provided for reducing the effect of backlash.

The dual-loop (DV) feature enables the controller to compensate for mechanical backlash. Typically, dual-loop systems use a rotary encoder on the motor and a linear encoder on the load (most Galil controllers accept inputs from two encoders per axis as a standard feature). Dual-loop control changes the standard PID control and closes the position loop with the load encoder ("PI") and derives the damping terms ("D") from the motor encoder. This method provides smooth and accurate control along the motion path regardless of backlash.

Most Galil motion controllers also include a sinusoidal commutation feature that allows designers to use lower-cost servo drives. This feature assures smooth motion and reduces torque ripple when using brushless motors. Each axis of sinusoidal commutated motion requires two DAC outputs that are phase shifted by 120°. The servo amplifier generates the third commutation signal. The commutation can be initialized with or without hall sensors. Two controller axes are required for each brushless motor. For example, a two-axis controller is required to drive one brushless motor with sinusoidal commutation.

Command Language

Galil’s Command Language is comprised of intuitive, two-letter, English-like ASCII commands that make programming quick and easy. For example, the “BG” command begins motion while the “SP 2000, 4000” command sets the speed of the X-axis as “2000” and the Y-axis to “4000”. Commands are included for system set-up, tuning, prescribing motion, error handling and application programming. Custom commands can be created upon request.

One of the more powerful features of all Galil controllers is their ability to store and execute complex application programs designed by the user. Application programs can be downloaded directly to the controller and executed without host intervention. The main benefit is that this frees the PC for system-level tasks. In fact, Galil controllers permit multitasking, which allows up to eight programs to execute simultaneously. Also, special commands are available for application programming including event triggers, IF/THEN/ELSE statements, conditional jumps, subroutines, symbolic variables and arrays.

A list of typical DMC commands is shown at the end of this section.

PID Block Diagram

Dual-loop Block Diagram
Modes of Motion

I/O

Error Handling

Dedicated I/O is provided for the following safety controls: forward and reverse limit inputs for each axis, home input for each axis, amplifier enable output for each axis, configurable abort inputs for each axis, master abort input, and error output. Most Galil drives have an electronic lockout input (ELO). Also, the controller provides the following safety functions in software: upper and lower software travel limits, position error limits, and automatic shut-off on excess position error. Program interrupts are provided for error and limit conditions and run-time program errors. The program interrupts cause the program sequencer to automatically branch to an error handling subroutine. In order to provide flexibility and system protection, the error handling subroutine can be customized by the user.

User I/O

In addition to dedicated inputs for home and limits, Galil controllers provide user I/O for synchronizing motion with external events such as switches and relays. The DMC-18x6 controller, for example, includes 8 analog inputs, 8 digital inputs and 8 digital outputs for 1 to 4-axis models; and 8 analog inputs, 24 digital inputs and 16 digital outputs for 5–8 axis models. All Galil controllers include many commands for handling I/O such as input interrupts, I/O triggers and timers. The combination of user I/O and application programming often eliminates the need for a PLC. When extra I/O is needed, Galil provides daughter boards and remote I/O units such as the RIO Pocket PLC to expand a controller’s I/O capability.

As part of the user I/O, Galil controllers provide a high-speed position capture and position compare feature for each axis. The high-speed position capture latches the exact position within 0.1 microseconds (40 µsec with optoisolation) of the occurrence of an input. Position capture is crucial for applications requiring precise synchronization of position to external events such as coordinate measurement machines.

The high-speed position compare feature produces an output pulse at a precise position. The starting position for the initial pulse and incremental distance for subsequent pulses are programmable.

Modes of Motion

Point-to-Point Motion

Any combination of axes can be operated in the Point-to-Point Motion mode to allow the target position (PA or PR), slew speed (SP), acceleration (AC) and deceleration (DC) to be specified independently for each axis. Upon begin (BG), the controller generates a trapezoidal velocity profile where the speed and acceleration can be changed anytime during motion. For applications that require smooth motion without abrupt velocity transitions, a motion smoothing function (IT) is provided. The position (TP) and position error (TE) may be interrogated at any time.

Position Tracking

The Position Tracking mode allows an axis to precisely follow a dynamic position target. In this mode, a new absolute position may be specified even if the axis is in motion. The controlled axis is commanded to move to the new position following a trapezoidal velocity profile.

The (PT) command places the controller in the Position Tracking mode, which allows the host to issue absolute position commands on the fly. The axis moves to the new position and waits until a new position target is specified and given by the (PA) command. The (ST) Stop command is used to exit the Position Tracking mode.

Example 2—Change Speed on Input, Position Tracking

Move the x-axis forward a distance of 20,000 counts at an initial speed of 50,000 counts/sec and with an acceleration and deceleration of 1,000,000 counts/sec². Once the sensor connected to input 1 triggers, reduce the speed to 25,000 counts/sec. Upon motion complete, begin position tracking mode and follow the target as updated by a host PC. Activation of input 2 will end motion. Note: multiple commands can be issued on the same line to conserve program space and give command priority while multitasking.

```
PROGRAM INTERPRETATION
#A Label
PR20000;SP50000 Relative Move, Speed
AC1000000;DC1000000 Accel and Decel
BGX Begin motion
AI1 Tripp point: Wait for sensor input
SP25000 Reduce speed
AMX Wait for original distance to profile
PT1 Turn on position tracking mode
target=_RPX Set target to current commanded position
#LOOP Label
PAX=target Track target updated by host
JP#LOOP,@IN[2]=1 Repeat unless input two is tripped
STX;AMX;EN End position tracking mode and program
```
Perform a move along the trajectory shown in figure 1 starting at the point A and move counter clockwise toward B. Due to accuracy requirements, the vector speed must be limited to 5,000 counts/sec on the circular segments BC and DE. On the linear segments, the motor speed is limited to 25,000 counts/sec. This operation is simplified given the controller’s ability to associate two speeds with each segment—upper and lower limits. These limits are designated by the < and > symbols. The resulting vector speed is shown as a function of the path in figure 2 below. A saw is attached to Axes Z and is lowered externally by setting bit 2 and turned on by setting bit 1. The blade will stay tangent to the vector path through the tangential following mode.

Example 4 — Vector motion with tangential following and curve slowdown

Perform a move along the trajectory shown in figure 1 starting at the point A and move counter clockwise toward B. Due to accuracy requirements, the vector speed must be limited to 5,000 counts/sec on the circular segments BC and DE. On the linear segments, the motor speed is limited to 25,000 counts/sec. This operation is simplified given the controller’s ability to associate two speeds with each segment—upper and lower limits. These limits are designated by the < and > symbols. The resulting vector speed is shown as a function of the path in figure 2 below. A saw is attached to Axes Z and is lowered externally by setting bit 2 and turned on by setting bit 1. The blade will stay tangent to the vector path through the tangential following mode.

Example 3 — Joystick with Coarse/Fine Speed Control

To control the motor velocity by a potentiometer, connect it to analog input #1 and read its voltage. Set the motor speed in proportion to the analog input with a maximum speed of 100,000 counts/sec for a 10 Volt input. Also, limit the acceleration and deceleration to 500,000 counts/sec. The speed scale is selectable by input 1 for fine or coarse velocity.

PROGRAM INTERPRETATION
#AUTO #AUTO label executed on powerup
JG0 Initial Speed
AC500000;DC500000 Accel and Decel
BGX Begin Jog mode
#LOOP Label
scale=(9*@IN[1])+1 Set scaling, 1 (fine) or 10 (coarse)
JG@AN[1]*1000*scale Read pot and update speed
JP#LOOP Repeat
EN End Program

2D Linear and Circular Interpolation (for controllers with two or more axes)

The Vector Mode (VM) is an extremely powerful mode where any two-dimensional path consisting of straight-line (VP) and arc segments (CR) can be prescribed. Up to 511 segments can be given prior to the start of motion and additional segments can be sent during motion allowing unlimited motion paths to be followed without stopping. The vector speed (VS), vector acceleration (VA), vector deceleration (VD), and motion smoothing (VT/IT) are also prescribed. The vector speed can be changed at any time during motion, permitting feedrate override, slow down around corners and assignment of different speeds to specific segments. Setting the vector speed ratio (VR) to zero and increasing the vector ratio to resume can easily accomplish a pause during motion.

The vector mode can be operated on two sets of coordinated axes at the same time using the (CA) command, which specifies the plane of motion as S and T. By having dual sets of coordinated motion, users can accomplish completely separate coordinated motion tasks with a single controller. It can even handle more complex motion control functions such as collision avoidance.

Another feature of the vector mode is tangential following that allows a third axis to remain tangent to the trajectory, which is ideal for cutting tools. Helical motion is also possible by commanding the third axis to follow the coordinated path at the same rate.

Example 4 — Vector motion with tangential following and curve slowdown

Perform a move along the trajectory shown in figure 1 starting at the point A and move counter clockwise toward B. Due to accuracy requirements, the vector speed must be limited to 5,000 counts/sec on the circular segments BC and DE. On the linear segments, the motor speed is limited to 25,000 counts/sec. This operation is simplified given the controller’s ability to associate two speeds with each segment—upper and lower limits. These limits are designated by the < and > symbols. The resulting vector speed is shown as a function of the path in figure 2 below. A saw is attached to Axes Z and is lowered externally by setting bit 2 and turned on by setting bit 1. The blade will stay tangent to the vector path through the tangential following mode.

PROGRAM INTERPRETATION
#PATH Label
CAS Set coordinate system
VMXYZ Define XY plane, Z is tangent
TN100,0 Setup Tangential following
VA500000;VD500000 Vector mode accel and decel
VP4000,0<25000>5000 Segment AB, slows for curve
CR500,-90,180 Arc segment BC
VP-1000,1000<25000>5000 Segment CD
CR500,90,180 Arc segment DE
VP0,0<25000 Segment EA
VE Indicate end of path
PAZ=_TN;BGZ;AMZ Orient saw blade to tangent
BGS Start motion sequence
AV4000 Wait 4000 vector distance (B)
SB1;WT100;SB2 Turn on and lower saw
AV6571 Wait 6571 vector distance (D)
CB2;WT500;CB1 Raise and turn off saw
EN End program
Modes of Motion

Electronic Gearing

The electronic gearing mode makes it easy for Galil controllers to simulate the motion of mechanical gears electronically. Any slave axis or set of slave axes can be geared to a master at a prescribed gear ratio defined by the (GR) command. The gear ratio can be changed on-the-fly and the controller permits multiple masters as defined by the (GA) command. A powerful feature of electronic gearing is that an axis can be geared and simultaneously be commanded to perform an independent or vector move. This is useful for the position correction required in packaging applications or when shapes must be cut on a moving conveyor belt. The electronic gearing mode is also useful for gantry applications where a special gantry mode (GM) command tightly couples two axes by ensuring that gearing cannot be disabled.

The gearing mode allows for a gradual ramp-to-gearing which results in smoother transitions when the gear ratio is changed. (GD) sets the distance of the master axis over which the slave will be engaged or changed to a new gear setting. The parameter (_GP) corrects for any accumulated errors in gearing during the ramp-to-gearing phase.

Example 5 — Electronic Gearing with Correction

| Gear Axis X and Z to Y with gear ratios of 2 and -4 respectively. Output the absolute single turn position for X at regular intervals. Assume the resolution of the X axis is 4000 counts per revolution. Upon input 1, automatically issue a correction movement superimposed upon the concurrent gearing. |

PROGRAM #GEAR GAY,,Y

GR2,-4

PRY=50000;SPY=10000

ACY=1000000;DCY=1000000

II1

BGY

#POS

abposx=_TPX%4000

MGabposx

WT500

JPP#POS

EN

#CORRECT

IP-10000,-1000

EN

#ININT

XQ#CORRECT,1

AI1

RI

Contouring

The contouring mode (CM) is extremely flexible as it allows any arbitrary profile on any set of axes to be prescribed. Here, the user bypasses the controller profiler and directly inputs the position versus time trajectory. The trajectory is described as the position increment (CD) over a defined time period (DT). Additionally, the controller performs linear interpolation between prescribed points. The contour mode is useful for following complex, computer-generated paths or for “teaching” position paths. An automatic data-recording feature allows the controller to “learn” a path and then follow it in the contour mode.

Example 6 — Contour circle with buffer monitoring

Fill arrays with contour data inscribing a circle with radius of 50000 counts. Contour the data at a time interval of 4 samples. The Accelera series incorporates a buffer of 512 contour segments to allow caching of contour data. The program will monitor this buffer to avoid overruns and fill it with more data when possible.

PROGRAM #CONTOUR radius=50000

DMcdx[720];DMcdy[720]

i=0;d=0

#CALC

label cdx[i]=radius*@COS[d]-radius

cdy[i]=radius*@SIN[d]

d=d+0.5

i=i+1

JP#CALC,i<720

i=0

CMXY

DT2

curx=0;cury=0

#PLAY

CD (cdx[i]-curx),(cdy[i]-cury)

curx=cdx[i];cury=cdy[i]

i=i+1

JP#PLAY,(CM>0)&(i<720)

JP#PLAY

#END

CD0,0=0

EN

INTERPRETATION

Label

Dimension arrays for data

Index and degrees variables

Label

Calculate shifted Cosine data

Calculate sin data

Increment degrees

Increment index

Reset index

Start Contour mode

Setup time slice, 2

Set incremental reference

Contour with incremental calculation

Update incremental reference

Increment index

Repeat while buffer not full & more data remains

Jump to end if data done

Wait until buffer has plenty of space

Jump back to continue playback

Label for exit

Stop contour mode

End of program

PVT

The PVT mode of motion allows arbitrary motion profiles to be defined by position, velocity and time individually on all 8 axes. This motion is designed for systems where the load must traverse a series of coordinates with no discontinuities in velocity. By specifying the target position, velocity and time to achieve those parameters the user has control over the velocity profile. Taking advantage of the built in buffering the user can create virtually any profile including those with infinite path lengths.

PVT segments must be entered one axis at a time using the PVn command. The PV command includes the target distance to be moved and target velocity to be obtained over the specified timeframe. Positions are entered as relative moves, similar to the standard PR command, in units of encoder counts and velocity is entered in counts/second. The controller will interpolate the motion profile between subsequent PV commands using a 3rd order polynomial equation.

Example 7 — PVT

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>INTERPRETATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVA=1000,500,1024</td>
<td>Horizontal axis segment AB. Ending velocity 500</td>
</tr>
<tr>
<td>PVA=800,100,1024</td>
<td>Horizontal axis segment BC. Ending velocity 100</td>
</tr>
<tr>
<td>PVA=100,1000,1024</td>
<td>Horizontal axis segment CD. Ending velocity 1000</td>
</tr>
<tr>
<td>PVA=1000,0,1024</td>
<td>Horizontal axis segment DE. Ending velocity 0</td>
</tr>
<tr>
<td>PVA=0,0,0</td>
<td>Exit PVT mode on the A axis</td>
</tr>
<tr>
<td>PVB=1000,500,1024</td>
<td>Vertical axis segment AB. Ending velocity 500</td>
</tr>
<tr>
<td>PVB=500,1000,1024</td>
<td>Vertical axis segment BC. Ending velocity 1000</td>
</tr>
<tr>
<td>PVB=1000,100,1024</td>
<td>Vertical axis segment CD. Ending velocity 100</td>
</tr>
<tr>
<td>PVB=-1000,0,1024</td>
<td>Vertical axis segment DE. Ending velocity 0</td>
</tr>
<tr>
<td>PVB=0,0,0</td>
<td>Exit PVT mode on the B axis</td>
</tr>
<tr>
<td>BT</td>
<td>Begin PVT motion on both axes</td>
</tr>
<tr>
<td>EN</td>
<td>End program</td>
</tr>
</tbody>
</table>

Electronic Cam

Any slave axis or set of slave axes can be linked to a master axis to simulate the motion of a mechanical cam. Here, the master axis can be a motor-driven axis or a master encoder. The Cam functions are specified by a table that allows complex profiles with varying position ratios to be prescribed. Any follower axis may be engaged or disengaged independently at specific points along a Cam cycle. This allows the user to select engagement and disengagement points where the speed change of the follower is minimal. The electronic Cam is an ideal mode for periodic operation, especially those requiring a varying position ratio along the motion cycle. Applications include flying shears, rotating knives, and packaging systems. Galil’s Cam-generating software can assist the user in defining the Cam table.
Modes of Motion

Linear Interpolation
for controllers with two or more axes

The linear interpolation mode (LM) allows any arbitrary path of up to 8 axes to be defined as a set of linear segments (LI). The vector speed (VS), vector acceleration (VA), vector deceleration (VD), and vector smoothing (VT) are also defined. Up to 511 LI segments can be given prior to the start of motion and additional segments can be sent during motion to allow paths of unlimited length to be followed.

Example 8 — Linear Interpolation with High Speed Latch

Move a 3D Cartesian robot through the following points with the coordinates indicated in inches. Assume that the resolutions of all the axes are 1,000 counts/inch, and set the required speed to 1.2 inches/sec (1,200 counts/sec) and the acceleration and deceleration to 100 in/sec² (100,000 counts/sec²). Note that the LM mode requires defining the segments in incremental form. A sensor will trigger a high speed latch on each axis to indicate a desired or reference position. The latch will store the current position within 40µsec of the sensor trip and the robot will return to this “set” position after the initial move.

<table>
<thead>
<tr>
<th>Point</th>
<th>Coordinates (inches)</th>
<th>Coordinates (counts)</th>
<th>Incremental length (LI argument)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td>(0,0,0)</td>
<td>(0,0,0)</td>
<td>0,0,0</td>
</tr>
<tr>
<td>P1</td>
<td>(4,2,1)</td>
<td>(4000,2000,1000)</td>
<td>4000,2000,1000</td>
</tr>
<tr>
<td>P2</td>
<td>(6,6,2)</td>
<td>(6000,6000,2000)</td>
<td>2000,4000,1000</td>
</tr>
<tr>
<td>P3</td>
<td>(8,8,0)</td>
<td>(8000,8000,0)</td>
<td>2000,2000,-2000</td>
</tr>
</tbody>
</table>

PROGRAM INTERPRETATION

```
#ROBOT
CAS
LMXYZ
VS1200;VA100000;VD100000
LI4000,2000,1000
LI2000,4000,1000
LI2000,2000,-2000
LE
ALXYZ
BGS
AMS
IF _ALX|_ALY|_ALZ
   MG"Not all axes have latched"
   ELSE
   MG"Tracking back to latch positions"
   LMXYZ
   LI(_RLX-_RPX),(_RLY-_RPY),(_RLZ-_RPZ)
   LE
   BGS
   AMS
   MG"Robot in position"
ENDIF
EN
```

Note: There are many homing and positioning algorithms available.
Galil Instruction Set*

System Configuration
BN Burn parameters
BP Burn program
BR Brush motor enable
BV Burn variables and arrays
BW Brake Wait
CC Configure communications port
CE Configure encoder type
CF Configure unsolicited messages handle
CI Configure communication interrupt
CN Configure switches
CW Data adjustment bit
DE Define dual encoder position
DP Define position
DR Data record update rate
EI Event interrupts
EO Echo
IT Independent smoothing
LB LCD Bias contrast
*L**K Program protect (Lock)
LU LCD Update
LZ Leading zeros format
MO Motor off
MT Motor type
PF Position format
PW Password
QD Download array
RS Reset
*R*S Master reset
UI User interrupt
VF Variable format

Math Functions
@ABS[x] Absolute value of x
@ACOS[x] Arc cosine of x
@ASIN[x] Arc sine of x
@ATAN[x] Arc tangent of x
@COM[x] 1’s complement of x
@COS[x] Cosine of x
@FRAC[x] Fraction portion of x
@INT[x] Integer portion of x
@RND[x] Round of x
@SIN[x] Sine of x
@SQR[x] Square root of x
@TAN[x] Tangent
% Modulus operator

Interrogation
ID AMP ID
LA List arrays
LL List labels
LS List program
LV List variables
MG Message command
QH Query hall state
QR Data record
QU Upload array
QZ Return data record information
RL Report latch
RP Report command position
*R*V Firmware revision information
SC Stop code
TA Tell amplifier status
TB Tell status
TC Tell error code

Programming
BK Breakpoint
DA Deallocate variables/arrays
DL Download program
DM Dimension arrays
ED Edit program
ELSE Conditional statement
ENDIF End of cond. statement
EN End program
HX Halt execution
IF If statement
IN Input variable
JP Jump
JS Jump to subroutine
NO No-operation—for comments
RA Record array
RC Record interval
RD Record data
RE Return from error routine
REM Remark program
RI Return from interrupt routine
SL Single step
UL Upload program
XQ Execute program
ZA Data record variables
XQ Execute program
UL Upload program
ZA Data record variables
ZS Zero stack
 Comment

Error Control
BL Backward software limit
ER Error limit
FL Forward software limit
LD Limit disable
OA Encoder failure
OE Off-on-error function
OT Encoder failure period
OV Encoder failure voltage
TW Timeout in-position

Trippoint
AD After distance
AI After input
AM After motion profiler
AP After absolute position
AR After relative distance
AS At speed
AT After time
AV After vector distance
MC Motion complete
MF After motion—forward
MR After motion—reverse
WT Wait for time

Independent Motion
AB Abort motion
AC Acceleration
BG Begin motion
DC Deceleration
FE Find edge
FI Find index
HM Home
HV Home speed
IP Increment position
IT Smoothing time constant
JG Jog mode
PA Position absolute
PR Position relative
PT Position tracking
SD Switch deceleration
SP Speed
ST Stop

Contour Mode
CD Contour data
CM Contour mode
DT Contour time interval

PVT Mode
PV Position, velocity, time
BT Coordinate start

ECAM/Gearing
EA ECAM master
EB Enable ECAM
EC ECAM table index
EG ECAM go
EM ECAM modulus
EP ECAM interval
EQ Disengage ECAM
ET ECAM table entry
EW ECAM widen
FY ECAM cycle counter
GA Master axis for gearing
GD Engagement distance for gearing
GM Gantry mode
GR Gear ratio for gearing

Vector/Linear Interpolation
CA Define vector plane
CR Circular interpolation move
CS Clear motion sequence
ES Elliptical scaling
IT Smoothing time constant
LE Linear interpolation end
LI Linear interpolation segment
LM Linear interpolation mode
ST Stop motion
TN Tangent
WA Vector acceleration
VD Vector deceleration
VE Vector sequence end
VM Coordinated motion mode
VP Vector position
VR Vector speed ratio
VS Vector speed
VV Vector Velocity

*Typical Instructions. This list is for DMC-40x0 Acceler. Other controllers have a slightly different Instruction Set.

www.galilmc.com / Galil Motion Control, Inc.
SmartMoves™ Spotlights Series

When innovative companies combine their ingenuity and capabilities to solve an automation challenge or make a better product, the sky truly seems to be the limit. That certainly is the case with the many companies featured in Galil’s latest SmartMoves Spotlights Series. These companies represent industries as varied as semiconductors and machine tools, medical, textiles and publishing. They have incorporated Galil motion controllers and worked closely with Galil engineers to create state-of-the-art solutions while cutting costs. Spotlighted applications include cutting-edge equipment that engrave microscopic numbers on diamonds, use ultrasound to destroy cancer cells, measure wafer surfaces in the sub-nanometer range, move complex Broadway sets and simulate giant cranes. They are just a few stories from the more than 500,000 Galil motor controllers that are helping move the world.

Semiconductor
- COBRA Placement — Component placement
- Brooks Automation, Inc. — Wafer handling robot
- Ultrasonic Systems, Inc. — Circuit board coating

Medical
- Tomo Therapy — Radiation treatment
- Focus Surgery, Inc. — Focused ultrasound to destroy cancer tissue in prostate
- IOL International — Optical generator of interocular lens
- Philips Medical — 3D ultrasound for fetal imaging
- TechniScan — Ultrasonic breast exams
- NGNY Devices SL — Automated Tube Handling System for Human Fluids

Entertainment
- WET Design — Water Sculptures
- MSM Design — Camera for 3D motion pictures

Machine Tools
- CamSoft Corporation — PC-based control for milling machines and lathes
- Pistorius Machine Company — Cut-to-length machine for mitering and fastening
- CNC Machines — CNC Waterjet Machine

Publishing
- GP2 Technology, Inc. — Automated book covering

Jewelry
- PhotoScribe/TeoSys — Diamond engraving

Automated Manufacturing Equipment
- CMM/JIT — Vinyl fence cutting
- PVA — Dispensing and spray coating machine
- Artesa — Engraving machine

Textiles
- Gammil/Statler Stitcher — Automated quilting machine

Test and Measurement
- Veeco Instruments, Inc. — Non-contact surface measurement
- ANSTO — Neutron beam instrumentation for scientific research
- NGNY — Automated tube handling system for human fluids
- UCO — Telescope instrumentation

Simulator Training
- GlobalSim — Crane simulator
- Sarnicola Simulation — Platforms for motion simulation

Automotive
- Team Mojavaton — Autonomous ground vehicle

Military
- PVP — Military Imaging system

Download any of these real customer stories and videos at www.galilmc.com or call Galil at 800-377-6329 to request your free SmartMoves book. We are looking forward to working with you so you can be our next SmartMoves partner.

Our commitment is to be the leader in providing high-performance, cost-effective, easy-to-use motion controllers that solve real customer problems in the OEM marketplace.
Terms and Conditions

■ ORDERS
Orders may be placed by calling Galil at 800-377-6329, fax 916-626-0102, or email orders@galilmc.com. All phone orders require a written confirmation by fax or mail.

■ LEAD TIME
Typical lead-time for standard products is 1 week ARO. Non-standard products may have a longer lead-time. The actual lead-time will be stated upon receipt of the written order. Shipping promises are made in good faith by Seller, and Seller cannot be held accountable for delays in shipping.

■ EXPEDITED SERVICE
An expedite fee of $100 will be charged for expedited service. This fee is additional to any rush shipping charges.

■ PRICES
Prices and specifications are subject to change. All prices listed are U.S. prices. Prices outside the U.S. are 10% above list. F.O.B. Rocklin, California. Applicable taxes, insurance, shipping and handling charges are to be paid in full by the purchaser.

■ QUANTITY DISCOUNTS
Discounts are available for volume purchases on a per-order or blanket-order basis. Consult Galil for a quotation. A cancellation fee will be charged if purchaser does not receive full delivery on quantity ordered.

■ PAYMENT TERMS
Payment terms are net 30 days from date of invoice, subject to credit approval by Galil. Accounts past due over 60 days will be charged 1-1/2% per month. Galil reserves the right to defer delivery on past due accounts. Accounts that do not receive credit approval, and accounts that do not pay within the stated terms will be COD.

■ RETURNED PRODUCTS
Products in good and re-sellable condition may be returned for 90% credit (subject to $25 minimum restock fee) within 30 days of purchase. All credit is subject to product testing and approval by Galil. No returns are accepted after 90 days. Non-standard products may not be returned for credit. Opened software products may not be returned for credit.

■ NOTICE OF SCHEDULE CHANGE
All changes to the shipping schedule made by the purchaser must be given to the seller in writing with two weeks advance notice.

■ WARRANTY
All controllers manufactured by Galil Motion Control are warranted against defects in materials and workmanship for a period of 18 months after shipment. Motors and Power supplies are warranted for 1 year. Extended warranties are available.

In the event of any defects in materials or workmanship, Galil Motion Control will, at its sole option, repair or replace the defective product covered by this warranty without charge. The customer is responsible for shipping to Galil. We will reship at our expense only to destinations in the United States and for products within warranty.

Call Galil to receive a Return Materials Authorization (RMA) number prior to returning product to Galil.

Any defect in materials or workmanship determined by Galil Motion Control to be attributable to customer alteration, modification, negligence, or misuse is not covered by this warranty.

EXCEPT AS SET FORTH ABOVE, GALIL MOTION CONTROL WILL MAKE NO WARRANTIES EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO SUCH PRODUCTS, AND SHALL NOT BE LIABLE OR RESPONSIBLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES.

TO PLACE AN ORDER —
Phone: 800-377-6329
Fax: 916-626-0102
Email: orders@galilmc.com