Telescopic Lasers for PIV Broader, Thinner and More Uniform Light Sheets

GENERAL MICROTECHNOLOGY & PHOTONICS

Litron offers telescopic versions of its popular Nano L and LPY PIV laser systems for dual pulse applications requiring a significantly lower M² value than traditional lasers but with the excellent spatial uniformity of a conventional

possibility to make broad, thin, uniform light sheets for large area or high resolution PIV studies.

resonator.

This gives the

Litron can achieve a beam divergence as low as 0.8mrad at 532nm by placing a telescope inside the resonator. This is

around four times lower than with a conventional laser and around twice that of a Gaussian

coupled laser. However, the Gaussian coupled laser suffers from poor mid-field spatial uniformity, leading to non-uniform illumination of the experimental area.

focusability is M-squared. A theoretically perfect laser beam has an M² value of one and real lasers have values of greater than one; the actual value of a real laser beam denotes how many times narrower or thicker a light sheet will be compared with a sheet from a perfect beam.

Beam divergence does not tell the whole story.

A 'figure of merit' for comparing a laser beam's

For Gaussian unstable lasers, M² is typically less than the value predicted by measuring the divergence and beam diameter at the output; the two values are usually closely related for stable lasers.

For PIV applications, a four times lower M² value means that a light sheet can be four times thinner for a given propagation distance or else four times longer for a given thickness.

For more information contact: Litron Lasers Email: sales@litronlasers.com

Comparison of Laser Types

	M ² Value	Light Sheet Extent	Light Sheet Uniformity
Conventional Stable	~12-15	Fair	Excellent
Gaussian Unstable	~1.6-1.8	Excellent	Poor
Telescopic Stable	~3.5	Very Good	Excellent

GMP SA GMP SA

Aain office: Avenue des Baumettes 17 Büro Zürich: Dübendorfstrasse 11a

www.gmp.ch Tél. 021 633 21 21 Tel. 044 825 34 00

info@gmp.ch info@gmp.ch

CH-1020 Renens CH-8117 Fällanden

Fax. 021 633 21 29 Fax. 044 825 34 01