Plasma Series ## High Energy at up to 200Hz Pulsed DPSS Nd:YAG Lasers. ## **Key Features** - Repetition rates up to 200Hz - Fully diode pumped - Super-Gaussian resonator M² ≤2 - Stable resonator M² ≤8 - RMS stability 0.2% at 1064nm - Diode life >4 billion pulses - 532nm, 355nm, 266nm and 213nm options available - Smooth, homogenous beam profile - Compact PSU and remote chiller ## **Applications** - Semiconductor annealing - Semiconductor and display inspection - · Laser shock peening - Laser lift-off - LCD repair - Ti:Sa pumping - Laser cleaning - LIBS & LIF # **System options** - Motorised optical attenuator - Auto-tuning harmonics - Real time beam profile monitoring - Real time pointing stability monitoring - Real time energy monitoring Nd:YAG lasers with output energies of up to 450mJ and repetition rates of up to 200Hz. The Plasma series incorporate Litron's sealed, mechanically robust diode pump module to ensure a stable output, high reliability, easy diode replacement and long diode lifetime of more than 4 billion pulses. Litron's unique diode module design and diode drive electronics combined with the mechanically stable and rigid optical rail systems deliver a class leading pulse to pulse stability of 0.2% RMS at 1064nm. All Plasma models employ a birefringence compensating twin rod resonator that gives a circular and highly homogenous beam profile. A Super-Gaussian coupled resonator is also available for applications where an $M^2 \le 2$ is required. The use of diode pumping results in a significant increase in pumping efficiency, thus reducing the heat management requirements. This allows a very compact, Litron designed, chiller to cool even the most powerful Plasma models. With only a single phase electrical supply, full RS232 control and on-board diagnostics the Plasma series are stand-alone, turn-key systems. Options include motorised auto-tuning and auto-tracking of the harmonics modules. Litron has developed industrially proven hands-free tuning to obtain the maximum energy output from a given harmonic module in less than twenty seconds. The additional auto-tracking function significantly reduces long term energy drift, often prevalent at UV wavelengths. #### **TECHNICAL DATA** | IECHNICAL DATA | | | | |---|--|---|--| | Model | LP 450-100 | LP 400-200 | LP-G 450-100 | | Repetition Rate (Hz) | 100 | 200 | 100 | | Output Energy (mJ)
1064nm
532nm
355nm
266nm | 450
225
100
45 | 400
200
90
35 | 450
225
100
45 | | Pulse Stability (RMS)
1064nm
532nm
355nm
266nm | 0.2
0.3
1.0
1.0 | 0.2
0.3
1.0
1.0 | 0.2
0.3
1.0
1.0 | | Pulse Length (ns) ⁽¹⁾
1064nm
532nm
355nm
266nm | 11-14
10-13
9-12
9-12 | 9-11
9-11
8-10
8-10 | 8-10
8-10
7-9
7-9 | | Resonator Beam Diameter (mm) (2) Beam Divergence (mrad) (3) M² @ 1064nm Pointing Stability (µrad) (4) Timing Jitter (ns) (5) Linewidth @ 1064nm (cm²l) Polarisation Diode Life (pulses) | Stable 6.5 ≤1 ≤8 ≤50 ≤0.5 ≤0.7 Vertical >4x10 ⁹ | Stable 5 ≤1 ≤8 ≤50 ≤0.5 ≤0.7 Vertical >4x10° | Super-Gaussian 6.5 ≤0.5 ≤2 ≤50 ≤0.5 ≤0.7 Vertical >4x10° | | Operation Control ⁽⁶⁾ Q-switch trigger and sync | RS232
TTL | RS232
TTL | RS232
TTL | | Services Voltage (VAC) Frequency (Hz) Power Ambient (°C) (7) External Cooling (8) | 220-250
50-60
Single Phase
5-30
Air | 220-250
50-60
Single Phase
5-30
Air | 220-250
50-60
Single Phase
5-30
Air | | Power Supply | Free standing | Free standing | Free standing | | | | | | LP 450-100 2 hour pulse stability at 100Hz. ### $\mbox{\ensuremath{\star}}$ All specifications at maximum repetition rate unless otherwise stated. - (1) FWHM measured with a fast photodiode. - (2) 100% beam diameter at laser exit port. - (3) Full angle at specified beam diameter. - (4) Full angle. - (5) RMS with respect to Q-switch trigger input. - (6) Full software suite and programming tools supplied. - (7) 0-80% non-condensing atmosphere, laser head only. (8) Standard air cooled chiller or optional water cooled chiller. #### **MECHANICAL DATA** All dimensions shown in mm Our policy is to improve the design and specification of our products. The details given in this document are not to be regarded as binding.