Gated Integrators and Boxcar Averagers

SR245 — Computer interface module with GPIB and RS-232

- · Eight analog I/O ports
- · 8-bit digital I/O port
- Two TTL I/O ports
- RS-232 and GPIB interfaces
- · 3500 point sample memory
- · Simple command structure

SR245 Computer Interface

The SR245 Computer Interface module is a powerful tool for data acquisition. It provides both an analog and a digital interface between your computer and your experiment.

Analog I/O

The eight analog I/O channels can be designated through software as all inputs, all outputs, or as a combination of inputs and outputs. All channels have 13 bits of resolution over the ± 10.24 VDC full-scale range, with 0.05 % accuracy.

Digital I/O

Two front-panel digital I/O bits are provided for use as counters or triggers and can be set or read by the computer. Additionally, an 8-bit input and an 8-bit output port are available (on an internal connector) for your own custom digital interfaces.

RS-232 and GPIB interfaces

Both RS-232 and GPIB interfaces are standard features of the SR245. Simple commands make programming easy from a variety of high-level languages—all that's necessary is the ability to send and receive ASCII strings. For example, sending "?5" instructs the module to measure the voltage on the 5th analog input BNC. Other commands allow you to record in the module's 3500 point buffer memory, ramp an analog output at a specified rate (for gate scanning), or read the contents of a digital counter.

Ordering Information

SR245 Computer interface module

www.gmp.ch

GMP SA Main office: Avenue des Baumettes 17 CH -1020 Renens Tél. 021 633 21 21 Fax. 02

Fax. 021 633 21 29

info@gmp.ch

GMP SA Büro Zürich: Dübendorfstrasse 11a CH-8117 Fällanden Tel. 044 825 34 00 Fax. 044 825 34 01 info@gmp.ch

Analog Ports

Configuration Any number of the eight ports may

be designated under program control as input ports, the rest

default to output ports.

1 M Ω impedance, ± 10.24 VDC range Inputs

Protected to 40 VDC 13-bit resolution (2.5 mV) 0.5 % accuracy

Input offset <2.5 mV

Maximum A/D rate is 2 kHz

 $<1 \Omega$ impedance Outputs

Short circuit current limit is 20 mA

13-bit resolution (2.5 mV)

0.5 % accuracy Output offset <2.5 mV

Digital Ports

Type Two front-panel I/O TTL bits, one

8-bit digital input port, one 8-bit latched digital output port

Front-panel inputs Input impedances $> 100 \text{ k}\Omega$

Minimum pulse width is 200 ns Maximum count rate is 4 MHz Logic one >3 VDC, logic zero <0.7 VDC

Inputs protected to ± 10 VDC Can drive 50 Ω loads to TTL levels

Front-panel outputs

General

Interfaces IEEE-488 (GPIB) and RS-232

(110 baud to 19.2 kbaud) Power +24 V/60 mA, 24 V/60 mA,

+12 V/20 mA, approx. 8 watts Mechanical Single-width standard NIM module One year parts and labor on defects Warranty

in materials and workmanship

Command List

Input/Output Commands

I < n > n = 0 to 8Designates the first *n* analog ports

as inputs, the remainder become outputs ? < n > n = 1 to 8Returns the value of the designated

analog port

P < n > n = 1.2Returns the value (0 or 1) of the

designated digital port

?D Returns the value of the 8-bit

digital input port

?S Returns the value of the status byte,

and clears the status byte C Configures B2 as an input and

resets the B2 counter

?C Returns number of pulses occurring

at B2 since the previous ?C

S < n > = < x >Sets the analog port n (which must be designated as an output) to the value x (x = -10.237 to +10.237 V)

n = 1 to 8

Designates digital bit *n* as output SB < n > = < m >

and sets its value to m (n = 1, 2 and

m = 0, 1

Designates the selected bit as an SB < n > = I

input (n = 1, 2)

SD = < n >Sets the 8-bit digital output port to

the value n (n = 0 to 255)

SM = < n >Sets the GPIB SRQ mask to the

value n (n = 0 to 255)

Trigger Commands

MS Sets the synchronous mode.

> Responses to? commands are returned after next trigger.

MA Sets the asynchronous mode

(default). Responses to ? commands

are returned after command

is received.

T < n >Designates every n^{th} pulse at B1 as

> a trigger (n = 1 to 32,767) Masks the trigger input so that no

> > triggers are recognized

ET Unmasks the trigger input

PB<*n*> Outputs a 10 µs TTL pulse at digital

port n (n = 1, 2)

P/<n> Outputs a 10 µs TTL pulse at B2

each nth trigger (n = 1 to 255)

Scan Commands

DT

N

X

Scans the list i..k of analog ports or SC < i >, < k > : < n >

digital port for *n* triggers. Total # of samples may not exceed 3711.

(i..k=1 to 8, D)

ES Ends the current scan immediately

> and resets the point sending counter Sends the next point of stored scan

?N Returns # of points scanned A < n > < i >Adds $n \times 2.5$ mV to the value of

analog port 8 (must be positive) on every i^{th} trigger (n, i = 1 to 255)

Scans the list i..k of analog ports or SS<*i*>,<*k*>:<*n*>

digital port for *n* triggers. Data is sent in a 2 byte binary format while scan is in progress.(i..k = 1 to 8, D)

Sends the data of a stored scan in

2 byte binary format

Miscellaneous Commands

Master reset returns the SR245 to its MR

default values.

W < n >Introduces a delay of $(n \times 400 \mu s)$

before sending each character over the RS-232 interface (n = 0 to 255)

Z < i >, < k >Changes the end-of-record

> characters sent by SR245 to those specified by the ASCII codes, i...k

www.gmp.ch

GMP SA Main office: Avenue des Baumettes 17 CH -1020 Renens Tél. 021 633 21 21 Fax. 021 633 21 29 info@gmp.ch

info@gmp.ch GMP SA Büro Zürich: Dübendorfstrasse 11a CH-8117 Fällanden Tel. 044 825 34 00 Fax. 044 825 34 01